检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于振华 黄山阁[1,2] 杨波 高红霞[1,2] 卢思 YU Zhenhua;HUANG Shange;YANG Bo;GAO Hongxia;LU Si(College of Computer Science & Technology, Xi’an University of Science and Technology, Xi’an 710054, China;Institute of Systems Security and Control, Xi’an University of Science and Technology, Xi’an 710054, China;School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China)
机构地区:[1]西安科技大学计算机科学与技术学院,西安710054 [2]西安科技大学智能系统安全与控制研究所,西安710054 [3]西安交通大学自动化科学与工程学院,西安710049
出 处:《西安交通大学学报》2022年第5期43-53,共11页Journal of Xi'an Jiaotong University
基 金:国家自然科学基金资助项目(61873277,62006184);陕西省重点研发计划资助项目(2019GY-056)。
摘 要:为研究新型冠状病毒肺炎(简称新冠肺炎)传播机理和传播风险,预测疫情发展趋势,对政府制定相关疫情防控政策提供帮助,提出了一种新的新冠肺炎传播非线性动力学模型(SLEIR)。该模型考虑到疫情中采取保护措施的人群,将其作为低危群体加入到模型中;通过对模型的基本再生数、平衡点、稳定性和分岔等进行分析,揭示新冠肺炎传播机理;利用印度新冠肺炎真实数据对模型参数和部分状态初值进行最小二乘拟合,根据拟合的参数对印度疫情发展趋势做出预测。该模型对印度3~4月、4~5月两阶段疫情预测平均相对误差分别为4.107%和2.805%,对于印度10月最新的疫情,预测平均相对误差为3.266%,预测结果表明SLEIR模型具有较好的预测效果。与传统SEIR模型相比,该模型能适应印度疫情复杂的变化趋势,且具有更高的预测精度,可以为政府选择合适的防控措施提供技术支撑。To study the spreading mechanism and risk and predict the spreading trend of COVID-19,and provide supports for the government to formulate prevention and control policies,a new nonlinear dynamic model,i.e.,the susceptible-low risk-exposed-infectious-removed(SLEIR)model is proposed,and the population with protection measures is regarded as a low-risk group and included into this model.The basic reproduction number,equilibrium,stability and bifurcation are analyzed to reveal the spreading mechanism,and the data on COVID-19 in India is used for least-squares fitting of model parameters and some initial values.The fitted parameters are used to predict the spreading trend in India.Predicting results show that the average relative errors of the epidemic prediction are 4.107%and 2.805%from March to April and from April to May,respectively.For the latest epidemic prediction of India in October,the average relative error is 3.266%.These simulations indicate that the proposed model can accurately predict COVID-19 spreading in India,is more suitable for analyzing its spreading in India with higher prediction accuracy compared with the traditional SEIR model,and can provide technical support for the government of India to select prevention and control measures.
关 键 词:新型冠状病毒肺炎 非线性动力学 基本再生数 平衡点 预测
分 类 号:TP399[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.155.106