基于WOA-SOS的无线传感器网络节点定位  被引量:6

Location in WSNs Node Based on WOA-SOS

在线阅读下载全文

作  者:傅彬[1] FU Bin(Shaoxing Vocational&Technical College,Shaoxing 312000,China)

机构地区:[1]绍兴职业技术学院,浙江绍兴312000

出  处:《电视技术》2022年第2期46-51,共6页Video Engineering

摘  要:针对无线传感器网络中节点定位误差大的缺点,提出基于鲸鱼算法和生物共生演算法的融合算法(Whale Optimization Algorithm-Symbiotic Organisms Serarch,WOA-SOS)。首先阐述节点定位优化函数,其次在鲸鱼算法初始化过程中使用混沌思想提高种群多样化,对可能导致算法陷入局部最优的因子采用自适应优化,在个体更新中使用共生演算法进行筛选,最后进行仿真实验,将本文算法与鲸鱼算法在6个基准函数中进行对比,结果表明所提算法具有良好的性能,在无线传感网络节点定位的节点密度、锚节点比例、通信半径以及区域面积四个方面具有较好的对比效果。Aiming at the disadvantage of large node positioning error in wireless sensor networks, a fusion algorithm based on Whale Optimization Algorithm Symbiotic Organizations Serarch(WOA-SOS) is proposed. Firstly, the node positioning optimization function is described. Secondly, in the initialization process of whale algorithm, the chaos idea is used to improve the population diversification, the factors that may lead to the local optimization of the algorithm are used for adaptive optimization, and the symbiotic algorithm is used for screening in individual update. Finally, the simulation experiment is carried out to compare the algorithm in this paper with whale algorithm in six benchmark functions, the results show that the proposed algorithm has good performance, and has good comparison results in four aspects: node density, anchor node proportion, communication radius and area.

关 键 词:无线传感器网络 节点定位 种群多样性 自适应优化 

分 类 号:TP311.1[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象