基于任务参数加权的动态运动基元泛化方法  被引量:3

Generalization Method of Dynamic Movement Primitives Based on Weighting of Task Parameters

在线阅读下载全文

作  者:张磊[1,2,3] 方灶军 王聚幸 何晨 顾丹宁 ZHANG Lei;FANG Zaojun;WANG Juxing;HE Chen;GU Danning(Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo,Zhejiang,315201;University of Chinese Academy of Sciences,Beijing,100049;Zhejiang Key Laboratory of Robot and Intelligent Manufacturing Equipment Technology,Ningbo,Zhejiang,315201)

机构地区:[1]中国科学院宁波材料技术与工程研究所,宁波315201 [2]中国科学院大学,北京100049 [3]浙江省机器人与智能制造装备技术重点实验室,宁波315201

出  处:《中国机械工程》2022年第10期1226-1233,1243,共9页China Mechanical Engineering

基  金:国家重点研发计划(2017YFB1300400);宁波市2025科技重大专项(2018B10058);NSFC-浙江两化融合联合基金(U1909215);装备预研领域基金(6140923010102)。

摘  要:为了提高机器人示教学习的计算效率以及泛化性能,提出了一种基于任务参数加权的动态运动基元泛化的机器人示教学习模型,主要步骤如下:运用动态运动基元模型提取多次示教运动轨迹的特征参数;在新的任务参数下,运用提取的特征参数重构特征运动轨迹;以示教任务参数与新任务参数的近似程度对特征运动轨迹进行加权叠加,生成新的运动轨迹。在Kukaiiwa机器人上的实验表明,在新的任务场景下,所提方法能够快速有效地泛化出新的运动轨迹,与已有方法相比,在计算效率及示教任务参数附近的泛化性能上有了较大的提升。In order to improve the computational efficiency and generalization performance of robot learning from demonstration,a robot learning from demonstration model was proposed based on generalization of dynamic movement primitives weighted by task parameters.The main steps were as follows:the dynamic movement primitives model was used to extract the characteristic parameters of the multi teaching motion trajectories;Under the new task parameter,the extracted feature parameterswas used to reconstruct the feature motion trajectory;the approximate degree of the teaching task parameters and the new task parameters were usedto weight the feature motion trajectory to generate a new motion track.Experiments on Kukaiiwa robot show that the proposed method may quickly and effectively generalize the new trajectory in the new task scenario.Compared with the existing methods,the proposed method has a great improvement in computational efficiency and generalization performance near the teaching task parameters.

关 键 词:机器人 示教学习 动态运动基元 泛化性能 任务参数 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象