检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李亚文[1] 刘爱军[1] 陈垚[1] LI Ya-wen;LIU Ai-jun;CHEN Yao(Electronic Information and Electrical Engineering College,Shangluo University/Smart Agricultural Technology and Application Research Center of Shangluo,Shangluo 726000,Shaanxi,China)
机构地区:[1]商洛学院电子信息工程与电气工程学院/商洛市智慧农业与技术应用研究中心,陕西商洛726000
出 处:《湖北农业科学》2022年第9期141-145,共5页Hubei Agricultural Sciences
基 金:商洛市科技计划重点项目(19SLKJ121);商洛学院科研创新团队项目(19SXC03)。
摘 要:针对传统的植物叶部病害检测算法复杂的特点,提出了一种基于GLCM纹理特征提取的植物叶部病害检测算法。以黄瓜叶部炭疽病为研究对象,利用K-means聚类算法进行图像阈值分割,并利用灰度共生矩阵提取样本的能量均值、熵均值、对比度均值和相关均值等4种纹理特征参数,通过参数训练,确定无病害区和有病害区参数的区域,进而判定样本的病害情况。结果表明该算法实现效率高、鲁棒性较好。To the complex algorithm of traditional plant leaf disease detection,this paper proposed a plant leaf disease detection algorithm based on GLCM texture feature extraction. As the research object of cucumber leaf anthracnose,the K-means clustering algorithm was used to perform image threshold segmentation,and the gray level co-occurrence matrix was used to extract the energy mean,entropy mean,contrast mean and correlation mean of the sample. With the parameter training,the area of disease-free area and diseased area parameters were determined,and then the disease condition of the sample was judged. The results showed that the algorithm had high efficiency and good robustness.
关 键 词:纹理特征 灰度共生矩阵 聚类算法 图像分割 植物叶部病害
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.36