Accuracy Raising Technique for Multivariate Spline Quasi-Interpolants over Type-2 Triangulations  

在线阅读下载全文

作  者:Shenggang ZHANG Chungang ZHU Qinjiao GAO 

机构地区:[1]School of Science,Zhejiang University of Science and Technology,Zhejiang 310023,P.R.China [2]School of Mathematical Sciences,Dalian University of Technology,Liaoning 116024,P.R.China [3]School of Statistics and Mathematics,Zhejiang Gongshang University,Zhejiang 310018,P.R.China [4]Collaborative Innovation Center of Statistical Data Engineering,Technology&Application,Zhejiang Gongshang University,Zhejiang 310018,P.R.China

出  处:《Journal of Mathematical Research with Applications》2022年第3期318-330,共13页数学研究及应用(英文版)

基  金:Supported by the National Natural Science Foundation of China(Grant Nos.12071057;11671068;12001487);the Characteristic&Preponderant Discipline of Key Construction Universities in Zhejiang Province(Zhejiang Gongshang University-Statistics)。

摘  要:Given a multivariate quasi-interpolation operator with the partition of unity property,we propose a method to raise the accuracy with simple knots.The resulting operators possess higher accuracy while not requiring any derivative information of the underlying function.On that basis,we improve the multivariate spline quasi-interpolants with higher accuracy over type-2triangulations.Moreover,we apply the improved quasi-interpolants to simulate time developing partial differential equations(PDEs).The numerical experiments verify the efficiency of the proposed methods.

关 键 词:QUASI-INTERPOLATION polynomial reproduction multivariate spline numerical solution 

分 类 号:O241.3[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象