检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪荣贵[1] 雷辉 杨娟[1] 薛丽霞[1] Wang Ronggui;Lei Hui;Yang Juan;Xue Lixia(School of Computer and Information,Hefei University of Technology,Hefei,Anhui 230601,China)
机构地区:[1]合肥工业大学计算机与信息学院,安徽合肥230601
出 处:《光电工程》2022年第5期36-51,共16页Opto-Electronic Engineering
基 金:国家重点研发计划资助项目(2020YFC1512601)。
摘 要:深度卷积神经网络最近在图像超分辨率方面展示了高质量的恢复效果。然而,现有的图像超分辨率方法大多只考虑如何充分利用训练集中固有的静态特性,却忽视了低分辨率图像本身的自相似特征。为了解决这些问题,本文设计了一种自相似特征增强的网络结构(SSEN)。具体来说,本文将可变形卷积嵌入到金字塔结构中并结合跨层次协同注意力,设计出了一个能够充分挖掘多层次自相似特征的模块,即跨层次特征增强模块。此外,本文还在堆叠的密集残差块中引入池化注意力机制,利用条状池化扩大卷积神经网络的感受野并在深层特征中建立远程依赖关系,从而深层特征中相似度较高的部分能够相互补充。在常用的五个基准测试集上进行了大量实验,结果表明,SSEN比现有的方法在重建效果上具有明显提升。Deep convolutional neural networks(DCNN)recently demonstrated high-quality restoration in the single image super-resolution(SISR).However,most of the existing image super-resolution methods only consider making full use of the inherent static characteristics of the training sets,ignoring the internal self-similarity of lowresolution images.In this paper,a self-similarity enhancement network(SSEN)is proposed to address abovementioned problems.Specifically,we embedded the deformable convolution into the pyramid structure and combined it with the cross-level co-attention to design a module that can fully mine multi-level self-similarity,namely the cross-level feature enhancement module.In addition,we introduce a pooling attention mechanism into the stacked residual dense blocks,which uses a strip pooling to expand the receptive field of the convolutional neural network and establish remote dependencies within the deep features,so that the patches with high similarity in deep features can complement each other.Extensive experiments on five benchmark datasets have shown that the SSEN has a significant improvement in reconstruction effect compared with the existing methods.
关 键 词:超分辨率 自相似性 特征增强 可变形卷积 注意力 条状池化
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38