检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马鸣 刘欢[1] 刘润香[1,2] MA Ming;LIU Huan;LIU Runxiang(Department of Psychology,School of Public Administration,Nanchang University,Nanchang 330031,China)
机构地区:[1]南昌大学公共政策与管理学院心理学系,江西330031 [2]南昌大学心理健康教育中心
出 处:《中国学校卫生》2022年第5期763-767,共5页Chinese Journal of School Health
基 金:江西省教育科学“十三五”规划2018年度重点课题项目(18ZD002);江西省高校人文社会科学研究2019年度项目(XL19207);江西省高校人文社会科学研究2020年度项目(XL20208)。
摘 要:目的 探索机器学习算法在预测大学生是否存在自杀意念中的效果,并分析大学生自杀意念的危险因素。方法选取某高校2021年21 224名在校本科生心理数据。以37项人口学和内外在心理因素为自变量,以大学生是否存在自杀意念为因变量,使用支持向量机、随机森林和LightGBM算法分别建立预测模型。将模型应用于测试集上,以检出率、F1分数和准确率评价预测效果。基于较优模型分析大学生自杀意念的高风险因素。结果 支持向量机、随机森林和LightGBM模型的检出率依次为0.61,0.64,0.69;F1分数依次为0.63,0.63,0.64;准确率依次为0.73,0.73,0.72。基于较优的LightGBM模型分析大学生自杀意念高风险因素,按照重要性排序依次为抑郁、年级、性别、绝望、生源地、拥有意义感、对自杀的态度、依赖、家庭经济情况、幻觉妄想症状、焦虑、网络成瘾和人际关系困扰。结论 LightGBM模型预测大学生是否存在自杀意念相较于支持向量机和随机森林模型有较好的预测效果。Objective To explore the predictive effect of machine learning algorithms on college students’ suicidal ideation and to analyze the associated factors of college students’ suicidal ideation.Methods The mental health data of 21 224 undergraduates was selected from a university in 2021.The independent variables were 37 demographic and internal and external mental health factors.The dependent variable was whether college students had suicidal ideation.Support vector machine,random forest and LightGBM algorithm were used to establish prediction models.The model was used in test set to so as to evaluate the model’s prediction effect by using detection rate,F1 score and accuracy rate.Based on the superior model,the high-risk factors of suicidal ideation in college students were analyzed.Results The detection rates of support vector machine,random forest,and LightGBM models were 61.0%,64.0%,69.0%;F1 scores were 0.63,0.63,0.64,and accuracy rates were 73.0%,73.0%,72.0%,respectively.Based on the superior LightGBM model,risk factors of suicidal ideation in college students included,depression,grade,gender,despair,place of origin,sense of meaning,attitude toward suicide,dependence,family economic situation,hallucinatory delusion symptoms,anxiety,internet addiction,and interpersonal distress.Conclusion The LightGBM model has a better prediction effect than the support vector machine and random forest models.
分 类 号:G647.8[文化科学—高等教育学] G444[文化科学—教育学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249