基于无人机与卫星图像的大型绿藻孔石莼(Ulva pertusa)遥感估算研究  被引量:2

Remote sensing estimation of green macroalgae Ulva pertusa based on unmanned aerial vehicle and satellite image

在线阅读下载全文

作  者:孟苗苗 郑向阳 邢前国[1,2,3] 刘海龙 MENG Miaomiao;ZHENG Xiangyang;XING Qianguo;LIU Hailong(CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation,Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences,Yantai 264003,China;Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China;University of Chinese Academy of Sciences,Beijing 100049,China)

机构地区:[1]中国科学院海岸带环境过程与生态修复重点实验室(烟台海岸带研究所),山东烟台264003 [2]中国科学院海洋大科学研究中心,山东青岛266071 [3]中国科学院大学,北京100049

出  处:《热带海洋学报》2022年第3期46-53,共8页Journal of Tropical Oceanography

基  金:国家自然科学基金(42076188、41676171);中国科学院先导专项(XDA1906000、XDA19060203、XDA19060501);中国科学院仪器研发重点项目(YJKYYQ20170048)。

摘  要:卫星影像是监测海面漂浮绿藻的重要数据源,但是混合像元的存在使得绿藻提取存在一定的误差。想要实现近海区域底栖绿藻的精细监测,需要解决绿藻亚像素覆盖度的问题。本文以厘米级分辨率无人机数据的绿藻提取结果为基准,通过分析Landsat卫星影像绿藻光谱,建立绿藻亚像素覆盖度与多种植被指数和多个特征波段反射率的反演模型。结果表明,蓝、绿、红波段反射率与绿藻亚像素覆盖度呈现较好的线性关系,随着绿藻亚像素覆盖度递增,蓝、绿、红波段反射率的值均递减。将蓝、绿、红波段的三种绿藻亚像素覆盖模型进行验证,发现绿波段反射率所建立的反演模型具有更高的准确性,决定系数、均方根误差、平均相对误差分别为0.92%、0.07%、10.85%。本文所建立的模型可以估算大型绿藻亚像素覆盖度,实现Landsat卫星影像对大型绿藻的精细监测。Satellite images are valuable data sources for monitoring floating green macroalgae on the sea surface. However,there are large errors in green macroalgae coverage derived on mixed pixels. It is thus important to solve the problem of sub-pixel coverage of green macroalgae, for precise monitoring of benthic green macroalgae in coastal area. In this paper,retrieval models were established to link sub-pixel coverage of green macroalgae with vegetation indexes and reflectance of characteristic bands by analyzing spectral characteristics of green macroalgae from the Landsat images, based on the results of green macroalgae coverage derived from unmanned aerial vehicle(UAV). The results show excellent linear relationships between the reflectance of blue, green, and red bands and the sub-pixel coverage of green macroalgae, and the reflectance decreases monotonically with increasing sub-pixel coverage. These three models were verified, and the results show that the model based on the reflectance of green band was more accuracy than the other indexes or index combination, with the highest coefficient of determination(R2), root mean square error(RMSE), and mean relative error(MRE) values of 0.92, 0.07, and 10.85%, respectively. Hence, we provide a model that can estimate the sub-pixel coverage of green macroalgae, and realize the precise monitoring of the coverage of green macroalgae extracted from Landsat images.

关 键 词:无人机 卫星影像 大型绿藻 亚像素覆盖度 

分 类 号:X87[环境科学与工程—环境工程] X834

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象