检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈洪飞 赵珂[1] 王忠 CHEN Hong-fei;ZHAO Ke;WANG Zhong(School of Information and Engineering,Nanchang Hangkong University,Nanchang 330063,China)
出 处:《南昌航空大学学报(自然科学版)》2022年第1期79-85,共7页Journal of Nanchang Hangkong University(Natural Sciences)
基 金:江西省自然科学基金(20192BAB207001,20202BABL204042);航空科学基金(201920056001,20200020056001)。
摘 要:粮食安全作为治国理政的头等要事,实时掌握谷物含水率的变化对粮食安全存储具有重要的意义。本文以“中浙优8号”晚籼稻为研究对象,通过近红外光谱实验获取在不同温度、湿度下谷物含水率的测量数据,采用遗传算法优化的BP神经网络建立预测谷物水分计算模型,再将其应用于近红外光谱谷物含水率检测实验中。研究结果表明,该预测模型相对于BP神经网络的决定系数提升了1.356%,仪器的测量精度为94.67%,具有应用价值。As food security is the most important thing in governing the country,it is of great significance to grasp the change of grain moisture content in real time for food security storage.This article choose late indica rice“Zhongzhe You No.8”as the research object,under the condition of different temperature and different humidity,get grain moisture content measurement by NIR experiments,and the BP neural network optimized by genetic algorithm was adopted to establish prediction model of grain moisture,then the prediction model is applied to the detection experiment of grain moisture content by NIR.Experimental results show that the prediction model used in this paper has more application value,because compared with BP neural network,the determination coefficient is improved by 1.356%,and the measurement accuracy of the instrument is 94.67%.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222