检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:虢盛 徐进立 张绍成 苟鸿飞 GUO Sheng;XU Jinli;ZHANG Shaocheng;GOU Hongfei(School of Geography and information Engineering,China University of Geosciences,Wuhan 430078,China)
机构地区:[1]中国地质大学(武汉)地理与信息工程学院,武汉430078
出 处:《导航定位学报》2022年第3期53-58,共6页Journal of Navigation and Positioning
基 金:国家自然科学基金项目(42174043,41804033)。
摘 要:多系统全球卫星导航系统(GNSS)接收机可通过系统间观测数据的相互校验探测潜在粗差,以保障导航定位的完好性。以全球定位系统(GPS)及北斗卫星导航系统(BDS)双模观测数据为例,采用均值漂移模型构建期望一致性检验量,实现异常粗差数据探测。基于武汉国际GNSS服务(IGS)九峰站点24小时GPS/BDS双模观测数据,在最不易探测粗差卫星观测数据上添加不同量级的粗差,验证粗差探测的有效性。统计结果表明:99%显著性水平构建非中心化参数检验量,本文方法在10、20和30 m粗差条件下,探测有效性分别为48.0%,95.5%和99.4%,相比经典接收机自主完好性监测(RAIM)算法的0,3.2%和65.5%有显著提高。由此验证本文方法在组合系统导航定位中的有效性,能更好地保障多模GNSS导航定位的完好性。Multi-constellation Global Navigation Satellite System(GNSS)receiver can detect potential gross errors by crossvalidation of observations from different systems,and the integrity of navigation could be guaranteed.This research take the Global Positioning System(GPS)and BeiDou navigation satellite System(BDS)residuals consistency,which were named as mean shift model,to detect potential outliers.Over 24 hours GPS/BDS observations from Wuhan Jiufeng IGS(International GNSS Service)station were used to simulate different levels of gross errors on Minimal Detectable Bias(MDB)satellite.The statistical results show that,with 99%confidential rate on 10,20 and 30 m gross errors,the new algorithm error detection availability were 48.0%,95.5%and 99.4%,respectively.Compare with 0,3.2%and 65.5%on traditional RAIM(Receiver Autonomous Integrity Monitoring)algorithm,the effectiveness of the new algorithm were verified.Hence,it can be concluded that the proposed algorithm has the superiority on multi-GNSS navigation and positioning service.
关 键 词:完好性监测 粗差探测 北斗卫星导航系统 组合导航 均值漂移模型
分 类 号:P228[天文地球—大地测量学与测量工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171