采用多路图注意力网络的情绪脑电信号识别方法  被引量:6

Emotional EEG signal recognition method using multi-path graph attention network

在线阅读下载全文

作  者:李景聪 潘伟健 林镇远 陈希昶 潘家辉 LI Jingcong;PAN Weijian;LIN Zhenyuan;CHEN Xichang;PAN Jiahui(Software College,South China Normal University,Foshan 528200,China)

机构地区:[1]华南师范大学软件学院,广东佛山528200

出  处:《智能系统学报》2022年第3期531-539,共9页CAAI Transactions on Intelligent Systems

基  金:国家自然科学基金青年项目(62006082);广东省自然科学基金项目(2021A1515011600,2020A1515110294);广州市科技计划项目(202102020877).

摘  要:情绪是一种大脑产生的主观认知的概括。脑信号解码技术可以以一种较客观的方式来有效地研究人的情绪及其相关认知行为。本文提出了一种基于图注意力网络的脑电情绪识别方法 (multi-path graph attention networks, MPGAT),该方法通过对脑电信号通道建图,利用卷积层提取脑电信号的时域特征以及各频带的特征,使用图注意力网络进一步捕捉情绪脑电信号的局部特征以及各脑区之间的内在功能关系,进而构建出更好的脑电信号表征。MPGAT在SEED和SEED-Ⅳ数据集的跨被试情绪识别平均准确率分别为86.03%、72.71%,在DREAMER数据集的效价(valence)和唤醒(arousal)维度的跨被试平均准确率分别为76.35%和75.46%,达到并部分超过了目前最先进脑电情绪识别方法的性能。本文所提出的脑电信号处理方法有望为情绪认知科学研究与情绪脑机接口系统提供新的技术手段。Emotion is a generalization of subjective cognition produced by the brain. Brain signal decoding technology can effectively study human emotions and related cognitive behaviors more objectively. This paper proposes a multipath graph attention networks(MPGAT) method for electroencephalogram(EEG) emotion recognition based on graph attention networks. This method uses convolutional layers to extract the time domain features of EEG signals and the features of each frequency band by mapping EEG signal channels;moreover, it uses the graph attention network to further capture the local features of emotional EEG signals and the internal functional relationships among the brain regions;constructing a better representation of EEG signals later. The average accuracy of MPGAT’s cross-subject emotion recognition in the SEED and SEED-Ⅳ datasets were 86.03% and 72.71%, respectively, and the average cross-subject accuracy rates of the valence and arousal dimensions in the DREAMER dataset were 76.35% and 75.46%, respectively, meeting and partially exceeding the performance of the most advanced EEG emotion recognition methods. The EEG signal processing method proposed in this paper can provide novel technical means for the scientific research of emotional cognition and emotional brain-computer interface system.

关 键 词:情绪识别 跨被试 图卷积神经网路 图注意力网络 脑电信号 脑机接口 神经网络 深度学习 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象