检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:余力[1] 李慧媛 焦晨璐 冷友方[1] 徐冠宇 YU Li;LI Hui-Yuan;JIAO Chen-Lu;LENG You-Fang;XU Guan-Yu(School of Information,Renmin University of China,Beijing 100872;School of Information and Electronics,Beijing Institute of Technology,Beijing 100081)
机构地区:[1]中国人民大学信息学院,北京100872 [2]北京理工大学信息与电子学院,北京100081
出 处:《计算机学报》2022年第6期1133-1146,共14页Chinese Journal of Computers
基 金:国家自然科学基金(71271209);中央高校基本科研业务基金;中国人民大学研究基金(2020030228)资助.
摘 要:行人轨迹预测对智慧城市建设、公共危机管理具有重要意义.复杂场景中的行人轨迹不仅包含行人个体运动时序性特征,还包含行人与周围其他运动实体之间的交互性特征.如何根据场景变化,对这种时序性和交互性特征进行深度刻画并进行轨迹预测,是复杂场景行人轨迹预测的关键问题.本文采用多头注意力机制和对抗生成方法,提出一种基于多头注意力机制的生成对抗网络模型(Multi-head Attention Generative Adversarial Model,MAGAM),对复杂场景下多行人轨迹进行建模.论文首先通过多头注意力机制融合行人的相对位移信息,从不同方面学习轨迹特征空间中各子空间特征的权重信息,实现对行人之间相互影响的交互性轨迹特征刻画;然后采用对抗生成机制和多轨迹生成策略,实现对复杂场景下不同个体移动轨迹的生成与预测.最后,本文在两个公开的数据集(ETH和UCY)进行了实验验证.实验结果表明,在ADE、FDE和AnlDE三个指标上,本文提出的MAGAM模型比基准模型误差平均降低了26.90%、21.02%和24.06%.本文对模型的预测结果进行可视化分析,直观展示了本论文模型的合理性.Pedestrian trajectory prediction plays a vital role in intelligent city construction and public crisis management.Distinct from the single trajectory prediction which rely on strong temporal correlation,in the complex scenes,the trajectory reflects not only the temporal characteristics of a single person,but the interactive features between human and other moving objects nearby.Therefore,how to deeply describe such temporality and interactivity,and then to generate accurate trajectory prediction results according to the change of the scene has become a major problem in the field of trajectory prediction today.In recent years,deep learning has attracted great attention and achieved success in the trajectory prediction tasks.However,most of these methods capture the influence between pedestrians from a single view,and they fail to consider the multiple factors which have an effect on the decision of pedestrians,such as going straight or turning.To this end,in this paper,we propose a multi-head attention generative adversarial model(MAGAM)which combines the multi-head attention mechanism and the generative adversarial network to model the pedestrian trajectory in the complex scenes.Specifically,the MAGAM model employs multi-head attention mechanism with relative displacement information to learn the attentive weight of subspace features in the whole trajectory feature space on different aspects,to realize the characterization of the interactive trajectory features that resulting from mutual influence between pedestrians.Moreover,the adversarial generation strategy and multi-trajectory generation strategy are used to achieve the reasonable generation of individual moving trajectory in the complex scenes.During the training process,the generator firstly extracts the personalized temporal features of pedestrians from historical observation sequences with long short-term memory(LSTM)based encoders.Secondly,the locations of pedestrians and temporal features are integrated into the multi-head attention model to learn the
关 键 词:复杂场景 轨迹预测 多头注意力 位置编码 对抗生成
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30