检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张驰 白志辉[2] 李亮[1] 陈冉丽[3] 吴侃[1] ZHANG Chi;BAI Zhihui;LI Liang;CHEN Ranli;WU Kan(School of Environment Science and Spatial Informatics,China University of Mining and Technology,Xuzhou 221116,China;Jizhong Energy Fengfeng Group Co.,Ltd.,Handan 056000,China;Shijiazhuang Railway Vocational and Technical College,Shijiazhuang 050041,China)
机构地区:[1]中国矿业大学环境与测绘学院,江苏徐州221116 [2]冀中能源峰峰集团有限公司,河北邯郸056000 [3]石家庄铁路职业技术学院,河北石家庄050041
出 处:《测绘通报》2022年第4期122-129,共8页Bulletin of Surveying and Mapping
基 金:国家自然科学基金(52104174)。
摘 要:利用三维激光扫描技术测得的建筑物点云数据能够较清晰地表示建筑物的三维空间信息,提供高精度、高密度的建筑物表面描述。点云本身不直接显示自身所包含的特征信息,在进行局部形变提取时,需要进行点云分割工作。现有的应用于建(构)筑物的分割算法大多依赖于建(构)筑物特征设定突变阈值,当遇到复杂场景时,这些假设往往会导致错误。随着机器学习在点云处理领域的延伸,建(构)筑物点云数据边界的识别和分割有了新的实现思路。本文以某矿区工作面上方铁路桥两期三维激光扫描数据为例,采用神经网络方法对桥拱钢结构实行分割提取,在对1000万个标记桥梁点云数据进行训练后,神经网络模型可以学习操作人员识别点云中各点的属性并进行标记,并提取两期数据中的钢结构点云;对使用神经网络分割出的桥拱钢结构点云进行分析,通过对钢结构底边线进行特征线拟合、长度提取,计算钢结构的位移及拉伸量,并结合桥拱位移、形变量分析桥梁形变。研究表明:使用神经网络模型对标记数据进行训练可以有效识别建(构)筑物特征,并应用于建(构)筑物局部形变分析。The point cloud data of buildings measured by 3D laser scanning technology can clearly represent the three-dimensional spatial information of buildings,and provide high-precision and high-density surface description of buildings.The point cloud itself does not directly display its own characteristic information,so when extracting local deformation,point cloud segmentation is needed.Most of the existing segmentation algorithms applied to buildings and structures rely on the characteristics of them to set the mutation threshold.When encountering complex scenarios,these assumptions often lead to errors.With the extension of machine learning in the field of point cloud processing,a new idea has emerged in the recognition of buildings and structures’boundaries and point cloud data segmentation.Taking the 3D laser scanning data of two phases of a railway bridge above the working face of a mining area as an example,this paper uses the neural network method to segment and extract the steel structure of bridge arches.After training 10 million marked bridge points,the neural network model can learn operators to recognize the attributes of points in the point cloud and mark them,then extract the steel structure point cloud in the two phases of data.In the next way,this paper analyzes the point cloud of steel structure of bridge arches segmented by neural network,through the characteristic line fitting and length extraction of the bottom edge line of steel structure,calculates the displacement and tension of steel structure,and analyzes the bridge deformation combined with arch displacement and shape variable.The research shows that using neural network to train the labeled data can effectively identify the characteristics of buildings and structures,and this technology can be applied to analyze local deformation of them.
关 键 词:三维激光扫描 点云分割 机器学习 变形监测 曲线拟合
分 类 号:P258[天文地球—测绘科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.118