检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘健[1,2] 顾扬 程玉虎 王雪松 LIU Jian;GU Yang;CHENG Yu-Hu;WANG Xue-Song(Engineering Research Center of Intelligent Control for Underground Space,Ministry of Education,Xuzhou 221116;School of Information and Control Engineering,China University of Mining and Technology,Xuzhou 221116)
机构地区:[1]地下空间智能控制教育部工程研究中心,徐州221116 [2]中国矿业大学信息与控制工程学院,徐州221116
出 处:《自动化学报》2022年第5期1246-1258,共13页Acta Automatica Sinica
基 金:国家自然科学基金(61906198,61976215,62176259);江苏省自然科学基金(BK20190622)资助。
摘 要:通过分析基因突变过程,提出利用强化学习对癌症患者由正常状态至患病状态的过程进行推断,发现导致患者死亡的关键基因突变.首先,将基因视为智能体,基于乳腺癌突变数据设计多智能体强化学习环境;其次,为保证智能体探索到与专家策略相同的策略和满足更多智能体快速学习,根据演示学习理论,分别提出两种多智能体深度Q网络:基于行为克隆的多智能体深度Q网络和基于预训练记忆的多智能体深度Q网络;最后,根据训练得到的多智能体深度Q网络进行基因排序,实现致病基因预测.实验结果表明,提出的多智能体强化学习方法能够挖掘出与乳腺癌发生、发展过程密切相关的致病基因.By analyzing the gene mutation process,it is proposed to use reinforcement learning to infer the process of cancer patients from normal to disease states,and to discover the key gene mutations that lead to the death of patients.Firstly,a multi-agent reinforcement learning environment is designed based on breast cancer mutation data by viewing genes as agents.Secondly,in order to ensure that agents can find the same policy as expert policy and to satisfy more agents for rapid learning,two kinds of multi-agent deep Q networks are proposed based on demonstration learning respectively:Behavioral Cloning-based multi-agent deep Q network and pre-training memory-based multi-agent deep Q network.Finally,we sort genes according to the trained multi-agent deep Q network to achieve pathogenic gene prediction.Experimental results show that the proposed multi-agent reinforcement learning methods can dig out pathogenic genes closely related to the occurrence and development of breast cancer.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63