检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡永生[1] HU Yong-sheng(College of General Education,Fujian Vocational College of Agriculture,Fuzhou Fujian 350007,China)
机构地区:[1]福建农业职业技术学院通识教育学院,福建福州350007
出 处:《淮阴师范学院学报(自然科学版)》2022年第2期115-120,共6页Journal of Huaiyin Teachers College;Natural Science Edition
摘 要:研究了一类四阶常微分方程两点边值奇摄动问题,分析其边界层行为.由匹配渐近展开法,构造了问题的外部解;通过引入伸展变换,构造边界层(内层)函数,获得内层解.通过Van Dyke匹配原则,将内外解进行匹配,得到奇摄动问题的一致有效的复合解.最后,通过数值解验证了结果的正确性.The two-point boundary value singularly perturbed problem for a class of fourth-order ordinary differential equations is studied.The external solution of the problem is constructed by the asymptotic expansion method;By introducing the stretching transformation,the boundary layer function is obtained.Finally,through the Van Dyke matching principle,the outer and inner expansion are matched to obtain the uniformly effective composite expansion of the singularly perturbed problem.The correctness of the result is verified by numerical solution.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.25.212