自然语言处理在简历分析中的应用研究综述  被引量:7

Survey of the Application of Natural Language Processing for Resume Analysis

在线阅读下载全文

作  者:李小伟 舒辉[1] 光焱[1] 翟懿 杨资集 LI Xiao-wei;SHU Hui;GUANG Yan;ZHAI Yi;YANG Zi-ji(State Key Laboratory of Mathematical Engineering and Advanced Computing,Information Engineering University,Zhengzhou 450001,China)

机构地区:[1]信息工程大学数学工程与先进计算国家重点实验室,郑州450001

出  处:《计算机科学》2022年第S01期66-73,共8页Computer Science

基  金:国家重点研发计划“前沿科技创新专项”(2019QY1305)。

摘  要:随着信息技术的快速发展,数据产生了爆炸式的增长,互联网上每天都会新增大量的简历数据。对求职者的简历进行分析,从中获取候选人的各类人员信息、所属行业类别和进一步的工作职位推荐是学者们所关注的问题。人工分析简历效率低下的问题,推动了自然语言处理(Natural Language Processing,NLP)技术在简历分析中的广泛应用。NLP利用人工智能和计算机技术来分析、理解和处理自然语言,可实现简历的自动化分析。文中调研了近10年来的相关文献,对NLP在简历分析中的应用环节及常用方法进行了梳理。首先,对自然语言处理进行了介绍;接着,从简历信息抽取、简历分类和简历推荐3个方面分析和归纳了自然语言处理在简历分析技术中的研究进展;最后,对简历分析的研究趋势作了预测并总结了全文。With the rapid development of information technology and the dramatic growth of digital resources,enormous resumes is generated in the Internet.It is a concern of scholars to analyze the resumes of job seekers to obtain the information of various personnel of candidates,industry categories and job recommendations.The inefficiency of manual resume analysis has promoted the wide application of natural language processing(NLP)technology in resume analysis.NLP can realize automated analysis of resumes by using artificial intelligence and computer technology to analyze,understand and process natural language.This paper systematically reviews the relevant literature in the past ten years.Firstly,the natural language processing is introduced.Then based on the principal line of resume analysis in NLP,the recent works in three aspects:resume information extraction,resume classification and resume recommendation are generalized.Finally,discussing the future development trend in this research area and summarizing the paper.

关 键 词:自然语言处理 简历分析 信息抽取 简历分类 简历推荐 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象