复广义高斯分布多通道最大似然联合去噪去混响波束形成器  被引量:4

Jointly Denoising and Dereverberation with Maximum Likelihood Beamformer Under Complex Generalized Gaussian Distribution

在线阅读下载全文

作  者:孟维鑫 厉剑[1,2] 郑成诗 李晓东[1,2] MENG Weixin;LI Jian;ZHENG Chengshi;LI Xiaodong(Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China)

机构地区:[1]中国科学院声学研究所,北京100190 [2]中国科学院大学,北京100049

出  处:《信号处理》2022年第4期677-689,共13页Journal of Signal Processing

基  金:国家自然科学基金青年基金(62001467,61801468)。

摘  要:提出了一种基于复超高斯分布的多通道联合去噪去混响波束形成器。本文采用复超高斯模型对语音信号建模,在最大似然准则下首次推导出联合去噪去混响波束形成器的解析表达式,并证明了该式是现有多种联合去噪去混响波束形成器的一般化形式。同时通过理论推导证明本文所提算法性能优于传统多通道预测误差算法级联最小功率无失真波束形成器。仿真实验与实际实验结果均表明,本文提出的算法在多个客观指标上明显优于现有联合去噪去混响算法。This paper proposes a jointly denoising and dereverberation beamformer based on a complex super-Gaussian distribution.By modelling speech using a complex super-Gaussian distribution,we first derive the optimal denoising and dereverberation beamformer with a maximum likelihood criterion.The paper further proves that the proposed beamformer can be regarded as a generalized framework of many existing jointly denoising and dereverberation methods and also demonstrates that the proposed beamformer outperforms the weighted prediction error algorithm cascaded minimum power distortionless beamformer theoretically.Simulation results and experimental results show that the proposed beamformer does outperform many state-of-the-art joint denoising and dereverberation algorithms in terms of several objective measurements.

关 键 词:语音增强 去噪去混响 波束形成 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象