检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]福州大学经济与管理学院,福建福州350108
出 处:《福州大学学报(哲学社会科学版)》2022年第2期44-52,共9页Journal of Fuzhou University(Philosophy and Social Sciences)
基 金:国家自然科学基金项目“基于知识网络面向网络舆情的政府决策知识供需匹配研究”(71271056)。
摘 要:为了解决具有非线性特征的未来24小时PM2.5浓度预测难题,将集合经验模态分解(ensemble empirical mode decomposition,EEMD)和相空间重构(phase space reconstruction,PSR)技术与布谷鸟算法优化的支持向量机(CS-SVR)模型结合起来,建立EEMD-PSR-CS-SVR组合预测模型。采用EEMD将PM2.5浓度时间序列分解为n个不同尺度的IMF子序列及余项,然后对各子序列进行相空间重构,再用重构后数据对支持向量机预测模型进行训练并得到未来24小时PM2.5浓度的预测结果,在其中采用布谷鸟算法对支持向量机参数进行优化。实验结果显示:建立EEMD-PSR-CS-SVR组合预测模型对PM2.5浓度的预测结果,相对于单一预测模型(ARIMA、LSTM、BP)、不同的模态分解方法(EMD-PSR、CEEMD-PSR),以及不同参数优化算法的SVR预测模型等具有显著提高的预测精度(R,RMSE,MAE,MAPE等评价指标),为未来24小时PM2.5浓度预测研究提供了一种新的方法。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222