检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Hao WANG Liyan DONG Minghui SUN
机构地区:[1]College of Computer Science and Technology,Jilin University,Changchun 130012,China [2]Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,Jilin University,Changchun 130012,China
出 处:《Frontiers of Computer Science》2022年第3期203-205,共3页中国计算机科学前沿(英文版)
基 金:the National Natural Science Foundation of China(Grant Nos.61272209,61872164);in part by the Program of Science and Technology Development Plan of Jilin Province of China(20190302032GX);in part by the Fundamental Research Funds for the Central Universities(Jilin University).
摘 要:1Introduction and main contributions In the field of social networks and knowledge graphs,semi-supervised learning models based on graph convolutional networks have achieved great success in node classification[1],inductive node embedding[2],link prediction[3],and recommend.These semi-supervised models based on graph convolutional network(GCN)[4]expect to obtain more feature information of a graph or accelerate the training.
关 键 词:CONVOLUTION AGGREGATION SEMI
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222