二阶变分图像恢复模型的重启动快速ADMM方法  被引量:2

Restart fast ADMM methods for second-order variational models of image restoration

在线阅读下载全文

作  者:宋田田 潘振宽 魏伟波 李青 Song Tiantian;Pan Zhenkuan;Wei Weibo;Li Qing(College of Computer Science and Technology,Qingdao University,Qingdao 266071,China)

机构地区:[1]青岛大学计算机科学技术学院,青岛266071

出  处:《中国图象图形学报》2022年第4期1066-1083,共18页Journal of Image and Graphics

基  金:国家自然科学基金项目(61772294);山东省自然科学基金项目(ZR2019LZH002)。

摘  要:目的基于二阶导数的图像恢复变分模型可以同时保持图像边缘与光滑特征,但其规则项的非线性、非光滑性,甚至非凸性制约着其快速算法的设计。针对总拉普拉斯(total Laplacian,TL)与欧拉弹性能(Euler’s elastica,EE)两种图像恢复变分模型,在设计快速交替方向乘子法(fast alternating direction methods of multipliers,fast ADMM)的基础上引入重启动策略,以有效消除解的振荡,从而大幅提高该类模型计算效率,并为其他相近模型的快速算法设计提供借鉴。方法基于原始ADMM方法设计反映能量泛函变化的残差公式,在设计的快速ADMM方法中根据残差的变化重新设置快速算法的相关参数,以避免计算过程中的能量振荡,达到算法加速目的。结果通过大量实验发现,采用原始ADMM、快速ADMM和重启动快速ADMM算法恢复图像的峰值信噪比(peak signal-to-noise ratio,PSNR)基本一致,但计算效率有不同程度的提高。与原始ADMM算法相比,在消除高斯白噪声和椒盐噪声中,对TL模型,其快速ADMM算法分别提高6%法提高100%动快速ADMM算法分别提高100%ADMM算法的计算效率基本相同。结论对于两种典型的二阶变分图像恢复模型,本文提出的快速重启动ADMM算法比原始ADMM算法及快速ADMM算法在计算效率方面有较大提高,计算效率对不同惩罚参数组合具有鲁棒性。本文设计的算法对于含其他形式二阶导数规则项的变分图像分析模型的重启动快速算法的设计可提供有益借鉴。Objective To develop image processing and computer vision,variational models have been widespread used in image de-noising,image segmentation and image restoration.Variational model of image restoration has a fundamental position.Variational model of image restoration can maintain the image edge and smooth features based on the second-order derivative.However,its regular terms are generally non-linear,non-smooth,or even non-convex.These features have their numerical algorithm design difficulty and the low computational efficiency of its numerical method.These features restrict the design of its fast algorithm as well.The designated acceleration method is essential to design optimal inertial parameters.The variational image processing models are often locally strongly convex or completely non-convex,which makes it difficult or time-consuming to estimate the optimal inertial parameters.Its inertial acceleration algorithms can cause ripples and fail to achieve the targeted acceleration effect.The analyzed results of developed monotonic algorithm,backtracking algorithm and restart algorithm can yield ripples phenomenon to keep algorithm convergence rate.Our research facilitates framework-based fast alternating direction methods of multipliers(ADMM)method to explore possibility of the restart fast algorithm in second-order variational models.Total-Laplacian based model(TL-based)and Euler’s elastic based model(EE-based)are illustrated to develop testart fast algorithms.Method Our research demonstrated second-order variational model of image restoration with nonlinear,non-smooth TL regular terms and non-linear,non-smooth,non-convex EE regular terms.The following restart fast ADMM algorithm is developed based on the alternation of direction methods of multipliers,Nesterov’s inertial acceleration method and ripples-yielded restart idea.TL model transformed into constrained equivalent convex optimization based on auxiliary variables and linear constraint equations.EE model transformed into equivalent constrained convex

关 键 词:图像恢复 二阶变分模型 快速交替方向乘子方法(fast ADMM) 重启动 总拉普拉斯模型 欧拉弹性能模型 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象