检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴华瑞[1,2] 郭威 邓颖 王郝日钦 韩笑 黄素芳[5] WU Huarui;GUO Wei;DENG Ying;WANG Haoriqin;HAN Xiao;HUANG Sufang(National Engineering Research Center for Information Technology in Agriculture,Beijing 100097,China;Beijing Research Center for Information Technology in Agriculture,Beijing Academy of Agriculture and Forestry Sciences,Beijing 100097,China;Key Laboratory of Digital Village Technology,Ministry of Agriculture and Rural Affairs,Beijing 100097,China;Beijing Research Center of Intelligent Equipment Technology for Agriculture,Beijing Academy of Agriculture and Forestry Sciences,Beijing 100097,China;Cangzhou Academy of Agricultural and Forestry Sciences,Cangzhou 061001,China)
机构地区:[1]国家农业信息化工程技术研究中心,北京100097 [2]北京市农林科学院信息技术研究中心,北京100097 [3]农业农村部数字乡村技术重点实验室,北京100097 [4]北京市农林科学院智能装备技术研究中心,北京100097 [5]沧州市农林科学院,沧州061001
出 处:《农业机械学报》2022年第5期1-16,共16页Transactions of the Chinese Society for Agricultural Machinery
基 金:国家重点研发计划项目(2019YFD1101105);财政部和农业农村部:国家现代农业产业技术体系项目(CARS23D07);北京市农林科学院青年科研基金项目(QNJJ202030)。
摘 要:随着互联网和人工智能技术的发展,农业知识智能化服务逐渐承担起为农业生产管理提供有效技术指导的作用。本文对农业文本语义理解中的关键技术及应用进行综述。首先按照自然语言处理中基于规则、机器学习和深度学习的语义处理方法介绍其在农业领域应用的进展;然后阐述了针对农业知识特性的语义分析方法,涵盖农业文本分析主要过程的储存、表达、计算,包括农业知识图谱的知识抽取、融合、表示、推理,TF-IDF、Word2Vec、BERT等农业文本表示模型与CNN、RNN、Attention等分类模型;阐述了可用于分词、向量化表达等的通用语料库和农业领域常用语料库;从农业智能问答、农业语义检索、农业智能管理决策方面阐述语义理解在农业领域中的应用;最后从农业语料库标准化构建、语义理解模型复杂度、多模态语义处理、多区域多语言语义理解等方面对农业文本的语义理解研究趋势进行了展望。With the development of Internet and artificial intelligence technology,agricultural knowledge intelligent services have gradually assumed the role of providing effective technical guidance for agricultural production management,especially during the epidemic.The key technologies and applications in the semantic understanding of agricultural knowledge service texts were reviewed.Firstly,its progress in agriculture was introduced according to the semantic processing methods based on rules,machine learning and deep learning in natural language processing.Then,the semantic analysis method for the characteristics of agricultural knowledge was introduced,covering the storage,expression and calculation of the main process of agricultural text analysis,including knowledge extraction,knowledge fusion,knowledge representation and knowledge inference of agricultural knowledge graph.The representation model of agricultural text such as TF-IDF,Word2Vec and BERT and classification models such as CNN,RNN and Attention were presented.Then the common corpus was described.The application of semantic understanding in agriculture from the aspects of agricultural intelligent question answering,agricultural semantic retrieval and agricultural intelligent management decision as well were introduced.Finally,the research trend of agricultural text semantic understanding was prospected from the aspects of standardization construction of agricultural corpus,complexity of semantic understanding model,multi-modal semantic processing,multi-region and multi-language semantic understanding.
关 键 词:农业知识智能化服务 深度学习 自然语言处理 农业文本 语义理解
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166