检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张宏鸣[1,2] 张国良 朱珊娜 陈欢[1] 梁会 孙志同 ZHANG Hongming;ZHANG Guoliang;ZHU Shanna;CHEN Huan;LIANG Hui;SUN Zhitong(College of Information Engineering,Northwest A&F University,Yangling,Shannxi 712100,China;Ningxia Smart Agricultural Industry Technology Collaborative Innovation Center,Yinchuan 750004,China)
机构地区:[1]西北农林科技大学信息工程学院,陕西杨凌712100 [2]宁夏智慧农业产业技术协同创新中心,银川750004
出 处:《农业机械学报》2022年第4期173-182,共10页Transactions of the Chinese Society for Agricultural Machinery
基 金:宁夏智慧农业产业技术协同创新中心项目(2017DC53);国家自然科学基金项目(41771315);国家重点研发计划项目(2020YFD1100601)。
摘 要:为提高葡萄种植区遥感识别精度,基于高分二号卫星遥感影像,对U-Net网络进行改进:从空间和通道维度自适应校准特征映射,以增强有意义的特征,抑制不相关的特征,提升地物边缘分割精度;减少下采样次数,使用混合扩张卷积代替常规卷积操作,以增大卷积核感受野,降低图像分辨率的损失,提高对不同尺寸地物的识别能力。实验结果表明,本文模型在测试集上的像素准确率、平均交并比和频权交并比分别为96.56%、93.11%、93.35%,比FCN-8s网络分别提高了5.17、9.57、9.17个百分点,比U-Net网络提高了2.39、4.59、4.39个百分点。此外,本文通过消融实验和特征可视化证明了注意力模块和混合扩张卷积在精度提升上的可行性。本文模型结构简单、参数量少,能够识别不同面积的葡萄种植区,边缘分割效果良好。The accurate acquisition of the spatial distribution of grape planting regions from remote sensing imagery is of great significance for optimizing the layout of grape planting regions and promoting the structural adjustment of grape industry.Due to the problems of the large differences in the size,unfixed spectral characteristics and complex background environment of the objects,it brings many challenges to accurate crop remote sensing recognition.In order to improve the accuracy of crop remote sensing recognition,a pixel-level accurate recognition method was proposed for grape planting regions based on the GF-2 satellite remote sensing imagery and the U-Net model was taken as the basic skeleton.The main improvements to U-Net were recalibrating the feature maps separately along channel and space adaptively,to boost meaningful features and improve the accuracy of edge segmentation,while suppressing weak ones,and reducing the number of downsampling and using hybrid dilated convolution instead of conventional convolution operation,to cut down the loss of image resolution and improve the recognition of objects of different shapes and sizes.The experiments showed that the pixel accuracy,mean intersection over union(MIoU),and frequency weighted intersection over union(FWIoU)of the model on the test set were 96.56%,93.11%and 93.35%,respectively,which were 5.17 percentage points,9.57 percentage points and 9.17 percentage points higher than those of the FCN8s model,and 2.39 percentage points,4.59 percentage points and 4.39 percentage points better than those of the original U-Net model.In addition,the impacts of the attention modules and hybrid dilated convolution on this model were analyzed through ablation experiments.The proposed model was simple with few parameters,capable of identifying different sizes of grape planting regions with fine edge segmentation effect,and it can provide an effective way to improve the accuracy of crop remote sensing recognition.
关 键 词:高分辨率遥感影像 高分二号 葡萄种植区 U-Net 注意力机制 混合扩张卷积
分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.93.141