高速铁路无砟轨道砂浆层病害联合检测模型试验  被引量:2

Model test of joint detection of mortar layer diseases on ballastless track of high-speed railway

在线阅读下载全文

作  者:舒志乐[1,2] 廖志恒 张华杰 张鑫 刘芹 SHU Zhile;LIAO Zhiheng;ZHANG Huajie;ZHANG Xin;LIU Qin(School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China;School of Emergency Management, Xihua University, Chengdu 610039, China;China National Aviation Fuel, Beijing 100080, China)

机构地区:[1]西华大学建筑与土木工程学院,成都610039 [2]西华大学应急管理学院,成都610039 [3]中国航空油料集团有限公司,北京100080

出  处:《中国科技论文》2022年第6期602-608,共7页China Sciencepaper

基  金:教育部春晖计划项目(192641)。

摘  要:为了提高无砟轨道CA砂浆层伤损病害检测的效率和准确性,针对空洞、脱空病害特点,建立无砟轨道CA砂浆层内部病害物理模型。使用探地雷达(ground penetrating radar,GPR)扫描采集空洞反射信号,分析病害反射信号成像特点并进行有限元模拟,再使用SSB-MATS型无砟轨道无损检测仪采集应力波在结构中产生的结构位移信息,利用最大熵法(maximum entropy method,MEM)对试验数据进行处理,生成三维切片云图,判断病害位置。结果表明:2种方法均能有效检测出无砟轨道CA砂浆层中存在的病害,使用联合检测方法能提高检测的效率和准确性。In order to improve the detection efficiency and accuracy of damage disease of CA mortar layer of ballastless track,a physical model of internal disease of CA mortar layer of ballastless track was established according to the characteristics of cavity and void.Ground penetrating radar(GPR)was used to scan and collect cavity reflection signals,and the imaging characteristics of disease reflection signals were analyzed and simulated by finite element method.Then,SSB-MATS ballastless track nondestructive detector was used to collect the structural displacement information generated by stress wave in the structure,and the maximum entropy method(MEM)was used to process the experimental data and generate 3D slice nephogram judging the disease location.The experimental results show that the two methods can effectively detect the diseases existed in the CA mortar layer of ballastless track,and the joint detection method improves the detection efficiency and accuracy.

关 键 词:无砟轨道 联合检测 探地雷达 冲击回波法 模型试验 

分 类 号:U213.244[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象