基于混沌PSO的大数据智能加权K均值聚类算法  被引量:6

INTELLIGENT WEIGHTED K-MEANS CLUSTERING ALGORITHM FOR BIG DATA BASED ON CHAOS PSO

在线阅读下载全文

作  者:刘洪基 Liu Hongji(School of Economics and Management,Chuxiong Normal University,Chuxiong 675000,Yunnan,China)

机构地区:[1]楚雄师范学院经济与管理学院,云南楚雄675000

出  处:《计算机应用与软件》2022年第4期311-319,共9页Computer Applications and Software

基  金:云南省科技计划项目(2017FH001-124)。

摘  要:针对传统聚类算法无法处理大数据中多视图高维数据问题,提出一种基于混沌粒子群优化算法的智能加权K均值聚类算法。在聚类模型中引入聚类之间的耦合程度以扩大聚类的相似性。为了消除初始聚类中心的敏感性,利用混沌粒子群优化算法通过全局搜索得到最优初始聚类中心、视图权重和特征权重。引入一种精确摄动策略提高混沌粒子群优化算法的寻优性能。通过在Apache Spark和Single Node两个平台上的实验验证了该方法在视图多、维数高的复杂数据集条件下具有较好的聚类性能。The traditional clustering algorithm can not deal with multi view and high dimension data in big data, so we propose an intelligent weighted K-means clustering algorithm based on chaos particle swarm optimization. The coupling degree between clusters was introduced to expand the similarity of clusters. Through global search, we used chaos particle swarm optimization to obtain the optimal initial clustering center, view weight and feature weight to eliminate the sensitivity of the initial clustering center. An accurate perturbation strategy was introduced to improve the performance of chaos particle swarm optimization. The experiments were carried out on two platforms named Apache Spark and Single Node. The results prove that the proposed method has better clustering performance under the condition of complex data sets with multiple views and high dimensions.

关 键 词:大数据 K均值聚类 高维多视图数据 粒子群优化算法 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象