检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡循勇 杨晓梅[1] 李昊怡 梅宇博 郑秀娟 刘凯[1] HU Xunyong;YANG Xiaomei;LI Haoyi;MEI Yubo;ZHENG Xiujuan;LIU Kai(College of Electrical Engineering,Sichuan University,Chengdu 610065,China)
出 处:《北京航空航天大学学报》2022年第5期855-862,共8页Journal of Beijing University of Aeronautics and Astronautics
基 金:四川省科技计划项目(重点研发项目)(2020YFS0085)。
摘 要:针对基于低秩先验的图像矩阵补全算法无法有效处理结构性缺失图像修复的问题,建立了在观测矩阵上使用双重先验的矩阵补全模型,在低秩先验的基础上引入稀疏先验,以便更好地利用观测矩阵的先验特征。该模型根据行列间的相关性,使用低秩先验对矩阵正则化;根据行列内的相关性,使用稀疏先验对矩阵正则化;为了更加精确地逼近秩函数,使用截断Schatten-p范数替代核范数作为低秩先验,从而提出了融合低秩和稀疏先验的矩阵补全模型,并使用交替方向乘子法有效处理所提模型。实验结果表明:算法修复的图像细节清晰,与截断核范数模型算法相比,峰值信噪比和结构相似度提升范围分别为2%~44%和0.7%~8%。To handle the problem that the image matrix completion algorithm based on low rank prior cannot effectively deal with the structural missing image inpainting,a matrix completion model using double prior on the observation matrix was established.The sparse prior was integrated with low rank prior,so as to make better use of the prior characteristics of the observation matrix.The model used low rank prior and sparse prior to regularize the matrix by using the correlation between rows and columns and within the row and column,respectively.Furthermore,in order to more accurately approximate the rank function,the truncated Schatten-p norm was used to replace the nuclear norm as the low rank prior.Thus,a matrix completion model integrating low rank and sparse prior was proposed,and the alternating direction method of multiplier was used to solve the proposed completion model effectively.The experimental results show that the details of the inpainting image are clear.Compared with the truncated nuclear norm model algorithm,the corresponding improvement ranges of peak signal-to-noise ratio and structure similarity are 2%-44%and 0.7%-8%,respectively.
关 键 词:稀疏先验 矩阵补全 截断Schatten-p范数 图像修复 交替方向乘子法
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.187.74