检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙义博 张文靖 王蓉[1] 李冲[1] 张琪[1] SUN Yibo;ZHANG Wenjing;WANG Rong;LI Chong;ZHANG Qi(School of Information and Cyber Security,People’s Public Security University of China,Beijing 100038,China)
机构地区:[1]中国人民公安大学信息网络安全学院,北京100038
出 处:《北京航空航天大学学报》2022年第5期881-889,共9页Journal of Beijing University of Aeronautics and Astronautics
基 金:国家自然科学基金(62076246);中央高校基本科研业务费专项资金(2019JKF426)。
摘 要:针对行人特征表达不充分的问题,提出了一种基于通道注意力机制的行人重识别方法。将通道注意力机制SE模块嵌入到骨干网络ResNet50中,对关键特征信息进行加权强化;采用动态激活函数,根据输入特征动态调整ReLU的参数,增强网络模型的非线性表达能力;将梯度中心化算法引入Adam优化器,提升网络模型的训练速度和泛化能力。在Market1501、DukeMTMC-ReID和CUHK03主流数据集上对改进后的模型进行测试评价,Rank-1分别提升2.17%、2.38%和3.50%,mAP分别提升3.07%、3.39%和4.14%。结果表明:改进后的模型能够提取更强鲁棒性的行人表达特征,达到更高的识别精度。To address the problem of insufficient expression of pedestrian characteristics,we propose a pedestrian re-identification method based on channel attention mechanism.The channel attention mechanism named SE module is embedded in the backbone network ResNet50 to weight and strengthen the key feature information.The dynamic activation function is used to dynamically adjust the parameters of ReLU according to the input characteristics,and enhance the nonlinear expression ability of the network model.The gradient centralization algorithm is introduced into the Adam optimizer to improve the training speed and generalization ability of the network model.Experiments on the three mainstream datasets:Market1501,DukeMTMC-ReID and CUHK03 show that Rank-1 is increased by 2.17%,2.38%,and 3.50%respectively,and mAP is increased by 3.07%,3.39%,and 4.14%respectively.The results indicate that our approach can extract more robust pedestrian expression features and achieve higher recognition accuracy.
关 键 词:通道注意力机制 动态激活函数 梯度中心化 特征提取 行人重识别
分 类 号:O235[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117