基于DNN的托卡马克等离子体边界重建研究  

Boundary Reconstruction of Tokamak Plasma Based on Deep Neural Networks

在线阅读下载全文

作  者:李佳怡 古顺平 古梦君 张恒 沙睿[2] LI Jiayi;GU Shunping;GU Mengjun;ZHANG Heng;SHA Rui(School of Computer Science and Technology,Chongqing University of Post and Telecommunications,Chongqing 400065,China;China Nuclear Energy Association,Beijing 100048,China)

机构地区:[1]重庆邮电大学计算机科学与技术学院,重庆400065 [2]中国核能行业协会,北京100048

出  处:《南方能源建设》2022年第2期77-81,共5页Southern Energy Construction

基  金:国家自然科学基金资助项目“基于多传感成像的EAST托卡马克上光学等离子体边界实时重建研究”(12005030)。

摘  要:[目的]为了实现托卡马克在放电过程中对等离子体位形的实时重建,在对相机标定算法分析的基础上,提出一种基于全连接神经网络的可见光边缘重建算法。[方法]该算法的作用是建立像素坐标系和托卡马克坐标系的对应关系进而实现等离子体可见光边缘重建。[结果]在该算法的基础上引入小样本学习,来对全连接神经网络重建算法做进一步改进。[结论]实验结果表明该算法可以精确地对等离子体可见光边缘进行重建,同时也满足系统对实时性的要求。[Introduction]In order to realize the real-time reconstruction of plasma shape and position in Tokamak,a visible light edge reconstruction algorithm based on fully connected neural network is proposed based on the analysis of camera calibration algorithm.[Method]The function of the algorithm was to establish the corresponding relationship between the pixel coordinate system and the To kamak coordinate system,and then realize the plasma visible light edge reconstruction.[Result]On the basis of the algorithm,few-shot learning is added to further improve the reconstruction algorithm of fully connected neural network.[Conclusion]Experimental results show that the algorithm can accurately reconstruct the plasma visible light edge,and also meet the real-time requirements of the system.

关 键 词:托卡马克 相机标定 可见光边缘重建算法 全连接神经网络 小样本学习 

分 类 号:TL4[核科学技术—核技术及应用] TL631

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象