检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:侯军军 张喜梅[2] 陈松[1] 孙斌[2] 张光华 谢娟 马非[3] 刘汉 HOU Junjun;ZHANG Ximei;CHEN Song;SUN Bin;ZHANG Guanghua;XIE Juan;MA Fei;LIU Han(Clinical College of Ophthalmology of Tianjin Medical University,Tianjin Eye Hospital,Tianjin Institute of Ophthalmology,Tianjin 300020,China;Shanxi Eye Hospital,Taiyuan 030002,Shanxi Province,China;Shanxi Intelligence Institute of Big Data Technology and Innovation,Taiyuan 030000,Shanxi Province,China;Department of Computer Engineering,Taiyuan University,Taiyuan 030000,Shanxi Province,China)
机构地区:[1]天津医科大学眼科临床学院,天津市眼科医院,天津市眼科研究所,天津市300020 [2]山西省眼科医院,山西省太原市030002 [3]山西智能大数据产业技术创新研究院,山西省太原市030000 [4]太原学院智能与自动化系,山西省太原市030000
出 处:《眼科新进展》2022年第6期465-468,共4页Recent Advances in Ophthalmology
基 金:山西省卫健委科研项目(编号2018090);山西省重点研发项目(编号201903D311009);山西省卫健委“四个一批”工程眼科学山西省重点实验室培育项目(编号2020SYS12)。
摘 要:目的探讨一种基于深度学习的视网膜毛细血管无灌注区(NPA)智能识别定量分析系统在视网膜中央静脉阻塞(CRVO)缺血分型诊断中的应用价值。方法回顾性病例系列研究。选取2017年1月至2018年12月经山西省眼科医院门诊确诊为CRVO并行荧光素眼底血管造影(FFA)检查的343例343眼患者纳入本研究。随访并记录患者自发病起1年内是否发生新生血管并发症。应用人工智能诊断系统计算CRVO患者后极部55°视野范围NPA面积,受试者工作特征曲线(ROC)分析该NPA面积对CRVO发生新生血管并发症的诊断价值。结果343例CRVO患眼中有26眼发生了新生血管并发症,发病率7.58%。依据NPA面积判断CRVO患者是否发生新生血管并发症的曲线下面积为0.889(95%CI0.799~0.978,P<0.001)。最佳截断值为20.997视盘面积(DA),灵敏度为0.808,26眼新生血管并发症患者中有21眼NPA值大于该值;特异度为0.946,317眼无并发症患者中有300眼NPA值小于该值。结论基于深度学习的NPA智能识别定量分析系统可为CRVO分型诊断提供决策依据。55°视野范围后极部NPA>20 DA可作为CRVO缺血分型的阈值标准。Objective To explore the application value of an intelligent recognition and quantitative analysis system based on deep learning for the retinal capillary non-perfusion area(NPA)in ischemic typing of central retinal vein occlusion(CRVO).Methods A total of 343 patients(343 eyes)who were diagnosed with CRVO and underwent fundus fluorescein angiography(FFA)in the outpatient department of Shanxi Eye Hospital from January 2017 to December 2018 were included in this retrospective case series study.All these patients were followed up for neovascularization complications within one year from the onset of the disease.The artificial intelligence-based diagnostic system was used to calculate the NPA area at 55°in the posterior pole of CRVO patients.The receiver operating characteristic(ROC)curve was used to evaluate the diagnostic value of the NPA area on the neovascularization complications in CRVO patients.Results Neovascularization complications occurred in 26 eyes(7.58%)of 343 CRVO patients.The area under the curve for determining whether CRVO patients developed neovascularization complications based on the NPA area was 0.889(95%CI 0.799-0.978,P<0.001).The best cutoff value was 20.997 disk area(DA),the sensitivity was 0.808,and 21 of 26 eyes with neovascularization complications had the NPA area greater than this value.The specificity was 0.946,and 300 of 317 eyes without neovascularization complications had the NPA area less than this value.Conclusion The NPA intelligent recognition and quantitative analysis system based on deep learning can provide a decision-making basis for CRVO typing diagnosis.NPA>20 DA at 55°in the posterior pole can be used as the threshold for CRVO ischemia typing.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90