基于BP神经网络的录井异常数据检测方法研究  被引量:2

Research on Detection Method of Logging Anomaly Data Based on BP Neural Network

在线阅读下载全文

作  者:李春生[1] 邹林浩 张可佳[1] 高雅田[1] 刘涛 豆立宪 LI Chun-sheng;ZOU Lin-hao;ZHANG Ke-jia;GAO Ya-tian;LIU Tao;DOU Li-xian(School of Computer and Information Technology,Northeast Petroleum University,Daqing 163318,China)

机构地区:[1]东北石油大学计算机与信息技术学院,黑龙江大庆163318

出  处:《计算机技术与发展》2022年第6期173-178,共6页Computer Technology and Development

基  金:国家自然科学基金项目(51774090);黑龙江省青年创新人才培养计划(UNPYSCT-2020144);黑龙江省省属本科高校基本科研业务费东北石油大学引导性创新基金(2021YDL-12)。

摘  要:在石油钻井工程中,由于技术和设备的客观因素,导致录井数据经常出现异常值,影响了录井解释评价精度。针对该问题,提出了一种基于BP神经网络的录井异常数据处理方法。为了在构建数据环节中提供准确且可信的工程数据,研究了录井异常数据的产生原因及异常数据的表征,并且通过对比格鲁布斯法、K-means聚类算法以及BP神经网络等方法的特点,选择BP神经网络作为异常值处理的方法。通过模型预测的录井数据误差平方值与样本数据的均方根误差进行比较,来确定数据的异常情况,保证检测异常点的合理性。经实验验证和同类算法的比较,表明了BP神经网络模型可以实现检测录井异常点数据,且检测异常点的准确率高于同类算法,处理异常点结果可信,能够有效解决因异常点数据所带来的问题。In the oil drilling engineering,because of the objective factors of technology and equipment,abnormal values often appear in the logging data,which affects the accuracy of logging interpretation and evaluation.Aiming at this problem,a method of logging anomaly data processing based on BP neural network is proposed.In order to provide accurate and reliable engineering data in the construction of data,we study the causes of logging abnormal data and the characterization of abnormal data,and select BP neural network as the method of outlier processing by comparing the characteristics of Grubbs method,K-means clustering algorithm,BP neural network and other methods.By comparing the square error of the logging data predicted by the model with the root mean square error of the sample data,the abnormal situation of the data can be determined to ensure the rationality of the abnormal points detected.The experimental verification and comparison with the similar algorithms show that the BP neural network model can detect logging anomaly data,and the accuracy of detecting anomaly points is higher than that of the similar algorithms.The results of handling anomaly points are reliable,and it can effectively solve the problems caused by the abnormal point data.

关 键 词:异常点检测 录井工程数据 BP神经网络 格鲁布斯法 K-MEANS聚类算法 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象