单次扫描连通域分析算法研究综述  被引量:7

A Review of Single-pass Connected Component Analysis Algorithms

在线阅读下载全文

作  者:曲立国[1,2] 陈国豪 胡俊 陈鹏 QU Li-gou;CHEN Gou-hao;HU Jun;CHEN Peng(School of Physics and Electronic Information,Anhui Normal University,Wuhu,Anhui 241002,China;Anhui Provincial Engineering Laboratory on Information Fusion and Control of Intelligent Robot,Wuhu,Anhui 241002,China)

机构地区:[1]安徽师范大学物理与电子信息学院,安徽芜湖241002 [2]安徽省智能机器人信息融合与控制实验室,安徽芜湖241002

出  处:《电子学报》2022年第6期1521-1536,共16页Acta Electronica Sinica

基  金:安徽省高等学校自然科学研究项目重点项目(No.KJ2019A0511)。

摘  要:连通域分析在单次扫描中标记像素同时提取每个连通域的特征数据,是二值图像处理的重要步骤之一.基于FPGA的硬件架构实现单次扫描连通域分析算法可以实现快速位流图像实时处理.本文重点分析了近十年来发展的连通域标记算法和单次扫描连通域分析算法,阐述了典型连通域分析算法的实现策略和框架,给出了它们的伪代码,并描述了它们的联合查找算法.此外,通过数据对比,从算法硬件架构的内存需求和吞吐量等方面对不同算法的性能进行了比较分析,并总结了它们的优缺点.分析结论为实现基于FPGA高速位流图像的连通域检测提供了理论依据和数据参考.Connected component analysis(CCA)is one of the major steps in binary image processing,which label pixels in single-pass and extract the features of each connected component at the same time.Single-pass connected component analysis algorithm based on FPGA hardware architecture can realize fast real-time bit stream image processing.In this article,we focus on connected component labeling(CCL)algorithms and single-pass connected component analysis algorithms developed in the last decade,explain the implementation strategies and architectures of the typical connected component analysis algorithms,present their pseudo codes,and describe their Union-find algorithms.In addition,through data comparison,the performance of different algorithms is compared and analyzed in terms of memory requirements and throughput of algorithm hardware architectures,and their advantages and disadvantages are summarized.The analysis results provide a theoretical basis and data reference for the realization of connected component detection based on FPGA high-speed bit stream images.

关 键 词:连通域分析 连通域标记 特征提取 图像处理 FPGA 

分 类 号:TP211[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象