检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王晓东 WANG Xiaodong(Shaanxi Aircraft Industry Co.,Ltd.,Hanzhong Shaanxi,723200,China)
机构地区:[1]陕西飞机工业责任有限公司,陕西汉中723200
出 处:《微处理机》2022年第3期43-47,共5页Microprocessors
摘 要:针对移动网络技术日益复杂的发展,为辅助网络运营商实现对移动网络的有效管理,提高对网络数据评估和优化的能力,通过无监督学习技术,提出一种基于关键性能指标(KPI)的特征提取法,对LTE小区进行模式聚类。通过对不同维度LTE小区样本数据特征的分析,对比自组织(SOM)神经网络和k-means算法的聚类表现,验证两种无监督学习聚类算法之间的优缺点。仿真结果表明,k-means与SOM在具有低维、高维数据集的不同小区中存在显著差异,分析实验数据总结出其中规律性。In view of the increasingly complex development of mobile network technology,in order to assist network operators to realize effective management of mobile networks and improve their ability to evaluate and optimize network data,a feature extraction method based on KPI is proposed by unsupervised learning technology to cluster LTE cells.By analyzing the characteristics of LTE cell sample data with different dimensions,and comparing the clustering performance of SOM neural network and k-means algorithm,the advantages and disadvantages of the two unsupervised learning clustering algorithms are verified.The simulation results show that there are significant differences between k-means and SOM in different communities with low-dimensional and high-dimensional data sets,and the regularity is summarized by analyzing the experimental data.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.94