多源数据结合深度量化背景下城市街道空间景观评价研究综述  被引量:2

Literature Review of Urban Street Landscape under the Background of Multi-Source Data Combined with Depth Quantification

在线阅读下载全文

作  者:严秋怡 吴榛 张凯云[1] Yan Qiuyi;Wu Zhen;Zhang Kaiyun

机构地区:[1]南京工业大学建筑学院

出  处:《城市建筑》2022年第9期154-159,共6页Urbanism and Architecture

基  金:2020年江苏省研究生创新工程——研究生科研创新计划(KYCX20_1108)“基于多源街景大数据的城市街道空间品质测度技术与应用研究”(2019ZD007)。

摘  要:街道空间是城市生活的重要载体,在居民的生活中扮演着重要角色。城市街道景观一直是相关人员研究的热点之一。本文通过对国内外相关文献进行搜集整理、梳理归纳,从街道空间和街道景观相关概念,以及从研究对象、研究内容及研究方法等方面进行归纳总结,发现街道景观评价分析研究存在评价指标有待统一、研究方法有待完善、研究对象的范畴有待向宏观方向扩展等问题。同时借助CNKI数据库,利用文献计量学方法对近几十年来国内外发表的街道空间和街道景观的相关文献进行了定量分析,发现街道景观研究涵盖多个领域,呈现多学科参与的特点,且文献数量持续增长。本文综述了街道空间景观研究的发展历程、现状,并对笔者未来的研究方向进行了展望。Street space is an important carrier of urban life and plays an important role in the life of residents.Urban street landscape has always been one of the hot issues studied by the relevant personnel.Through collecting,sorting out and summarizing the relevant literature at home and abroad,this paper summarizes the related concepts,research objects,research contents and research methods of street space and street landscape,and finds that the evaluation indexes are not unified,the research methods need to be improved,and the scope of the research object needs to be extended to the macro direction.At the same time,with the help of CNKI database and bibliometric method,this paper makes a quantitative analysis on the literature on street space and street landscape published at home and abroad in recent decades,and finds that the research on street landscape covers many fields,showing the characteristics of multidisciplinary participation,and the number of literature continues to grow.This paper summarizes the development process and current situation of street space landscape research,and prospects the future research direction of the author.

关 键 词:风景园林 街道景观 多源数据 深度量化 

分 类 号:TU984.191[建筑科学—城市规划与设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象