A new method for generating a clear-sky Landsat composite for cropland from cloud-contaminated Landsat-7 and Landsat-8 images  

在线阅读下载全文

作  者:Junhua Li Shusen Wang 

机构地区:[1]Canada Centre for Mapping and Earth Observation,Natural Resources Canada,Ottawa,Canada

出  处:《International Journal of Digital Earth》2018年第5期533-545,共13页国际数字地球学报(英文)

基  金:This work was supported by the Long Term Satellite Data Records Project and Groundwater Geoscience Program of NRCan.

摘  要:A new method was developed in this study for producing a clear-sky Landsat composite for cropland from cloud-contaminated Landsat images acquired in a short time period.It used Thiel–Sen regression to normalize all Landsat scenes to a MODIS image to make all Landsat images radiometrically consistent and comparable.Pixel selection criteria combining the modified maximum vegetation index and the modified minimum visible reflectance selection methods were designed to enhance the pixel selection of land/water over cloud/shadow in the image compositing.The advantages of the method include(1)avoiding complicated atmospheric corrections but with reliable surface reflectance results,(2)being insensitive to errors induced by image coregistration uncertainties between Landsat and MODIS images,(3)avoiding the lack of samples for the regression analysis using the full Landsat scenes(rather than overlay regions),and(4)enhancing cloud/shadow detection.The composite image has MODIS-like surface reflectance,thus making MODIS algorithms applicable for retrieving biophysical parameters.The method was automatically implemented on a set of 13 cloud-contaminated(>39%)Landsat-7(Scan-Line CorrectorOff)and Landsat-8 scenes acquired during peak growing season in a crop region of Manitoba,Canada.The result was a 95.8%cloud-free image.The method can also substantially increase the usage of cloudcontaminated Landsat data.

关 键 词:LANDSAT COMPOSITING MODIS Thiel–Sen regression 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象