检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:任丹丹 梁新峰 REN Dandan;LIANG Xinfeng(School of Mathematics and Big Data,Anhui University of Science and Technology,Huainan,Anhui,232001,P.R.China)
机构地区:[1]安徽理工大学数学与大数据学院,淮南安徽232001
出 处:《数学进展》2022年第2期299-312,共14页Advances in Mathematics(China)
基 金:Supported by NSFC(No.11801008);Key Projects of Natural Science Foundation of Anhui Education Department(Nos.KJ2018A0082,KJ2019A0107);Natural Science Foundation of Anhui Province(No.2008085QA01);Key Program of Scientific Research Fund for Young Teachers of AUST(No.QN2017209)。
摘 要:设T是定义在交换环上R的三角代数,φ:T×T→T是定义在T上的任意Jordan双导子.受[Comm.Algebra,2017,45(4):1741--1756]和[Linear Algebra Appl.,2009,431(9):1587--1602]研究的启发,本文致力研究φ的结构形式.我们指出在适当条件下Jordan双导子φ可以分解成内双导子和extremal双导子之和,推广了本方向现有成果.本文结果可直接应用于分块上三角矩阵代数和Hilbert空间定义的套代数.Let T be a triangular algebra over a commutative ring R andφ:T×T→T be an arbitrary Jordan biderivation of T.Motivated by the elegant and powerful works of[Comm.Algebra,2017,45(4):1741-1756]and[Linear Algebra Appl.,2009,431(9):1587-1602],we will address the question of describing the form ofφin the current work.It is shown that under certain mild assumptions,φis the sum of an inner biderivation and an extremal biderivation,which explicitly extends the existing works in this vein.Our results are immediately applied to block upper triangular algebras and Hilbert space nest algebras.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222