检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《港口科技》2022年第5期39-44,46,共7页Port Science & Technology
摘 要:因潮位预报受风、浪、流等环境因素影响,传统的潮汐调和分析预报方法不能很好地预报潮位时间序列的复合特征,提出一种基于长短期记忆(Long Short Term Memory,LSTM)神经网络的潮位预报方法,并分别对TPXO9全球潮汐模型模拟潮位的2021年6月逐分钟潮位数据、4个不同潮汐类型验潮站(日照、鲅鱼圈、三亚、北.海)的2010年逐时实测数据进行训练、预报及精度验证。利用上述试验确认LSTM模型中隐藏神经元数目、初始学习率、迭代训练次数等网络层参数的最优选择分别为90.0.001、200。对4个验潮站进行潮位预报,结果表明:当训练数据量设置为数据样本总量的30%时,即可得到精度较高的预报结果,精度约为3~5cm。采用LSTM神经网络方法进行潮位预报是有效且可靠的。
关 键 词:潮位预报 长短期记忆神经网络 隐藏神经元数目 初始学习率 迭代次数 TPXO9潮汐模型 验潮站
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] P731.34[自动化与计算机技术—控制科学与工程] U652.3[天文地球—海洋科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63