检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王刚 丁卫平[1] 张再云[1] 刘培宇 WANG Gang;DING Weiping;ZHANG Zaiyun;LIU Peiyu(School of Mathematics,Hunan Institute of Science and Technology,Yueyang 414006,China)
出 处:《湖南理工学院学报(自然科学版)》2022年第3期1-6,共6页Journal of Hunan Institute of Science and Technology(Natural Sciences)
基 金:湖南省自然科学基金青年基金项目(2020JJ5209)。
摘 要:提出肿瘤免疫模型刻画不同时刻采用药物治疗与免疫治疗策略控制肿瘤的过程.利用微小幅度扰动法,获得在肿瘤灭绝周期解对应的不动点处的雅可比矩阵的特征值,然后得到肿瘤灭绝周期解局部稳定的充分条件.进一步,运用常微分方程解的比较技巧,探究系统具有肿瘤存在周期解的持久性条件.最后,通过数值模拟分析治疗周期对系统的动力学行为的影响.A tumor-immune model for describing the processes of chemotherapy and immunotherapy at different fixed times was proposed.By using the small amplitude perturbation method,the eigenvalues of the Jacobian matrix at the fixed point corresponding to the tumor-free periodic solution was obtained and then the sufficient condition of its local stability was given.Moreover,the permanence of the system with at least one tumor-present periodic solution was investigated using the comparison techniques of the solutions of ordinary differential equations.Finally,the effects of the therapeutic period on the dynamical behaviors of the system were analyzed by means of numerical simulations.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171