检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜建 张磊 李继庚[1] 洪蒙纳[1,3] 满奕 DU Jian;ZHANG Lei;LI Jigeng;HONG Mengna;MAN Yi(State Key Lab of Pulp and Paper Engineering,South China University of Technology,Guangzhou,Guangdong Province,510640;Guangdong Energy Conservation Center,Guangzhou,Guangdong Province,510030;China-Singapore International Joint Research Institute,Guangzhou,Guangdong Province,510555;Guangdong Artificial Intelligence and Digital Economy Laboratory(Guangzhou),Guangzhou,Guangdong Province,510335)
机构地区:[1]华南理工大学制浆造纸工程国家重点实验室,广东广州510640 [2]广东省节能中心,广东广州510030 [3]中新国际联合研究院,广东广州510555 [4]人工智能与数字经济广东省实验室(广州),广东广州510335
出 处:《中国造纸学报》2022年第2期81-86,共6页Transactions of China Pulp and Paper
基 金:国家重点研发计划(2020YFE0201400);人工智能与数字经济广东省实验室(广州)青年学者项目(PLZ2021KF0019)。
摘 要:介绍了一种基于高斯混合模型(GMM)和马氏距离(MD)组合算法的过程工业故障预测模型。该模型首先通过相关系数去除冗余变量和无关变量,然后通过K-Means聚类算法标记故障前的异常数据以获得核心特征变量,最后基于GMM-MD组合算法构建健康指标,以评估生产过程的健康程度。利用国内某造纸厂实时生产数据对该模型进行验证;结果表明,该模型的故障预测精准率为76.82%,召回率为72.50%,可较好地跟踪造纸过程设备运行状态的变化过程,起到过程工业故障预测作用。A process industry fault prediction model based on Gaussian mixture model(GMM)and Mahalanobis distance(MD)combinational algorithm was introduced.The model first removes redundant and irrelevant variables through the correlation coefficient,and then marks abnormal data before the fault through the K-means clustering algorithm to obtain core characteristic variables,and finally constructs health index based on the GMM-MD combinational algorithm to evaluate health degree of the production process.The model was verified by using the real-time production data of a domestic paper mill.The result shows that the predictive accuracy and recall rate of the model is 76.82%and 72.50%,respectively,indicating it could properly track the variation process of equipment running state during papermaking process and play the role of fault prediction in process industry.
分 类 号:TS7[轻工技术与工程—制浆造纸工程] X793[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222