检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡浩帆 HU Haofan(COSCO Shipping Specialized Carriers Co.,Ltd.,Guangzhou 510623)
机构地区:[1]中远海运特种运输股份有限公司,广州510623
出 处:《广东造船》2022年第3期82-85,共4页Guangdong shipbuilding
摘 要:基于滑油效能数据,通过构建容错率高、泛化能力强的BP神经网络模型诊断柴油机运转故障,实现对柴油机零件磨损状况的监测。经过比较光谱分析、自动磨粒分析等油液分析技术的优缺点,选择光谱分析法监测滑油效能数据;构建神经网络,经测试比较确定隐含层节点数及构建函数的最佳选择;利用已知的滑油效能数据训练构建的神经网络,经检测其所得误差在允许范围内,成功验证基于滑油效能数据、BP 神经网络,可以较精确的监测柴油机零件磨损状况,并通过神经网络结合 Simulink 和数据库,构建柴油机零件磨损状况模拟仿真系统,实现了对滑油效能数据的模拟。Based on the lubricating oil efficiency data,this paper build a BP neural network model with high fault tolerance and strong generalization ability to diagnose the running status of diesel engine and realize the diagnosis of the wear degree of its parts.After comparing and analyzing the advantages and disadvantages of oil analysis techniques such as spectral analysis and automatic abrasive particle analysis,the spectral analysis method is selected to monitor the performance data of lubricating oil.The neural network is constructed,and the best number of hidden layer nodes and construction function are determined by testing and comparison.The measured oil performance data is used to train the neural network,the error obtained by the detection is within the allowable range.It verifies that based on the lubricating oil performance data,the BP neural network can more accurately monitor the degree of wear of diesel engine parts.Through the neural network combined with Simulink and the database,a simulation system for the wear degree of the diesel engine parts is constructed,and the simulation of the lubricating oil efficiency data is realized.
分 类 号:U664.81[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33