基于RGB引导的深度图增强方法  

RGB-guided depth image ehancement method

在线阅读下载全文

作  者:梅军辉 习俊通[1] MEI Jun-hui;XI Jun-tong(School of Mechanical Engineering,Shanghai Jiaotong University,Shanghai 200240,China)

机构地区:[1]上海交通大学机械与动力工程学院,上海200240

出  处:《信息技术》2022年第6期112-116,共5页Information Technology

摘  要:受ToF相机成像原理和硬件设备的限制,深度图分辨率较低,且包含较多噪声与空洞。该问题的存在对位姿估计、尺寸测量等物料识别与测量任务带来较大影响。针对上述问题,文中利用RGB图像与深度图之间的相关性,使用高质量RGB图像引导深度图的降噪、补洞与超分辨。通过深度神经网络融合RGB与深度图像信息,并结合部分卷积网络对深度图空洞补全,重建深度图质量有显著提升。Due to the limitations of ToF camera,including image-forming principle and hardware equipment,the depth image has a low resolution and contains noise and holes.This problem has a great impact on pose estimation,size measurement and other material identification,and measurement tasks.In this paper,we propose a neural network for denoising,hole filling and super-resolution simultaneously guided by RGB image,which is based on correlation between RGB images and depth maps.Through the fusion of convolutional neural network with RGBD information,and combined with the use of partial convolution to fill hole,the quality of reconstructed depth map is significantly improved.

关 键 词:深度图像处理 RGBD融合 深度图重建 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象