基于Agent模型的电力企业干部资质画像构建方法  被引量:1

Construction Method of Qualification Portrait of Power Enterprise Cadres Based on Agent Model

在线阅读下载全文

作  者:冯志鹏 严宇平 陈文安 苏华权 FENG Zhipeng;YAN Yuping;CHEN Wenan;SU Huaquan(Guangdong Electric Power Information Technology Co. Ltd., Guangzhou 510600, China;Guangdong Power Grid Co. Ltd., Guangzhou 510600, China;Information Center of Guangdong Power Grid Co. Ltd., Guangzhou 510600, China)

机构地区:[1]广东电力信息科技有限公司,广东广州510600 [2]广东电网有限责任公司,广东广州510600 [3]广东电网有限责任公司信息中心,广东广州510600

出  处:《微型电脑应用》2022年第6期120-123,共4页Microcomputer Applications

摘  要:构建电力企业干部资质画像时,大多忽略了电力企业干部资质信息清洗的必要性,导致画像的信息覆盖率低、F1系数低、构建时间长,由此,提出基于Agent模型的电力企业干部资质画像构建方法。引入Agent模型,建立电力企业干部资质相关信息采集系统,利用堆栈式降噪自编码器清洗电力企业干部资质信息,通过隐半马尔可夫模型提取电力企业干部的行为特征,将提取的特征输入长短期记忆网络LSTM中,构建电力企业干部资质画像。实验结果表明,所提方法的信息覆盖率高、F1系数高、画像构建时间短。In constructing the power enterprise cadre qualification portrait,most of them neglect the necessity of cleaning the power enterprise cadre qualification information,which leads to the low information coverage rate,low F1 coefficient and long construction time.Therefore,this paper proposes a construction method of power enterprise cadre qualification portrait based on agent model.The agent model is introduced to establish the power enterprise cadre qualification information collection system.The stack noise reduction self-encoder is used to clean the power enterprise cadre qualification information.The hidden semi Markovian model is used to extract the behavior characteristics of power enterprise cadres.The extracted features are input into the long-term and short-term memory network LSTM to construct the power enterprise cadre qualification portrait.The experimental results show that the proposed method has high information coverage,high F1 coefficient and short portrait construction time.

关 键 词:AGENT模型 电力企业 用户画像 堆栈式降噪编码器 隐马尔可夫模型 LSTM 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象