基于FCN语义分割的视频人像分割方法  

在线阅读下载全文

作  者:林镇源 蒋小莲 张文辉[1] 

机构地区:[1]桂林电子科技大学,广西桂林541000

出  处:《电子元器件与信息技术》2022年第5期176-178,182,共4页Electronic Component and Information Technology

摘  要:语义分割是计算机视觉中非常重要的一环,其核心是对输入图像中的每个像素进行分类和定位,本文对于传统的FCN网络进行略微改进,从而实现提高语义分割效果。首先,将轻量级网络FCN作为语义分割的特征提取网络。其次,利用卷积缩小网络特征来模型大小和降低模型计算成本。最后,以人与背景的关系作为约束条件,使用CrossEntropyLoss损失函数和MIoU(均交并比)等评价指标进行模型的评估,最终在公开数据集Supervisely的5711张人像图片中,按0.9作为训练集、0.1作为验证集进行人像分割,达到了82.47%的MIoU值,较原先网络80.25%的MIoU值有所提高。在16G的运行内存下,达到了每张图25帧。

关 键 词:语义分割 FCN网络 计算机视觉 人像分割 

分 类 号:TN941.2[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象