检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:金守峰[1,2] 侯一泽 焦航 张鹏 李宇涛[1,2] JIN Shoufeng;HOU Yize;JIAO Hang;ZHNAG Peng;LI Yutao(College of Mechanical and Electrical Engineering, Xi′an Polytechnic University, Xi′an, Shaanxi 710600, China;Xi′an Key Laboratory of Modern Intelligent Textile Equipment, Xi′an Polytechnic University, Xi′an, Shaanxi 710600, China)
机构地区:[1]西安工程大学机电工程学院,陕西西安710600 [2]西安工程大学西安市现代智能纺织装备重点实验室,陕西西安710600
出 处:《纺织学报》2022年第6期133-139,共7页Journal of Textile Research
基 金:陕西省重点研发计划项目(2020GY-172);陕西省自然科学基础研究计划项目(2017JM5141)。
摘 要:针对传统图像识别方法对抓毛织物表面特征难以提取且识别准确率低的问题,提出了一种改进AlexNet模型的抓毛织物质量检测方法,通过数据增强方法对抓毛织物数据进行扩充,构建卷积神经网络对抓毛织物的样本特征进行提取,利用SGDM、RMSProp、Adam优化算法和改变学习率相结合的实验方法,采用全新学习与迁移学习两种算法对抓毛织物图像数据集进行训练,在训练完成后,分别利用卷积神经网络的不同深度池化层提取抓毛织物样本的特征作为输入,将提取到的抓毛织物特征拟合支持向量机(SVM)分类器,最后对输入的抓毛织物图像进行分类。实验结果表明:使用卷积神经网络方法能够增加卷积层对抓毛织物表面特征的提取能力,获得具有较高分辨力的图像特征,通过数据增强和SGDM算法训练的模型,提取网络pool5层特征拟合SVM分类器,识别准确率明显提高。基于改进AlexNet模型的抓毛织物质量检测方法能够提取抓毛织物表面特征且识别率高。The traditional image recognition method is difficult to extract the surface features of the fleece fabrics leading to low recognition accuracy.This study proposed an improved AlexNet model for the quality detection method of the fleece fabrics.The convolutional neural network was used to extract the sample features of the fleece fabric,and the experimental method combining SGDM,RMSProp,Adam optimization algorithm was adopted for the study to investigate effects of changing learning rate and the use of two new learning and transfer learning algorithms in training the fleece fabric image dataset.After the completion of training,different depth pooling layers of the convolutional neural network were employed to extract the features of the fleece fabric samples.The extracted fleece fabric features were fitted to the support vector machine(SVM)classifier to analyze the input fleece fabric image.The experimental results show that the use of the convolutional neural network method can increase the ability of the convolutional layer to extract the surface features of the fleece fabric,and obtain image features with higher resolution.The model trained by the data enhancement and SGDM algorithm can extract the network pool5 layer features.With the SVM classifier,the recognition accuracy enhanced significantly.The quality detection method of fleece fabrics based on the improved AlexNet model can extract the surface features of fleece fabrics with high recognition rate.
关 键 词:抓毛织物 机器视觉 卷积神经网络 迁移学习 数据增强 织物质量检测
分 类 号:TN911.73[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3