Hilbert空间上的算子值(p,q)-Bessel乘子  

Operator valued(p,q)-Bessel multipliers in Hilbert spaces

在线阅读下载全文

作  者:孙悦 李鹏同[1] SUN Yue;LI Pengtong(College of Science,Nanjing University of Aeronautics and Astronautics,210016,Nanjing,Jiangsu,PRC)

机构地区:[1]南京航空航天大学理学院,江苏省南京市210016

出  处:《曲阜师范大学学报(自然科学版)》2022年第3期67-74,共8页Journal of Qufu Normal University(Natural Science)

基  金:国家自然科学基金(11671201).

摘  要:在Hilbert空间上引入算子值p-框架和算子值(p,q)-Bessel乘子等概念,重点研究乘子,这里1<p,q<∞且1/p+1/q=1.一个算子值(p,q)-Bessel乘子是由一个算子值p-Bessel序列、一个算子值q-Bessel序列和一个有界数列构成.结果表明:(1)在一定条件下,有界数列分别属于c_(0),l^(1)和l^(2)时,乘子分别是紧算子、迹类算子和Hilbert-Schmidt算子;(2)当算子值q-Bessel序列换成p-Riesz基时,有界数列与乘子之间的对应是一对一的;(3)乘子关于其构成元具有连续依赖性.This paper introduces the concepts of operator valued p-frames and operator valued(p,q)-Bessel multipliers in Hilbert spaces,and the multipliers are mainly studied,where 1<p,q<∞and 1/p+1/q=1.An operator valued(p,q)-Bessel multiplier is determined by an operator valued p-Bessel sequence,an operator valued q-Bessel sequence and a bounded scalar-sequence.The main results of this paper are as follows:(1)Under some conditions,when the bounded scalar-sequence belongs to c_(0),l^(1) and l^(2) respectively,the multiplier is a compact operator,a trace class operator and a Hilbert-Schmidt operator respectively;(2)If the operator valued q-Bessel sequence is replaced by an operator valued p-Riesz basis,then the correspondence between the bounded scalar-sequences and multipliers is one-to-one;(3)The multiplier depends continuously on its component elements.

关 键 词:框架 算子值p-框架 算子值p-Bessel序列 算子值(p q)-Bessel乘子 

分 类 号:O177.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象