基于深度强化学习的自动协商研究综述  被引量:1

Review of Automated Negotiation Based on Deep Reinforcement Learning

在线阅读下载全文

作  者:唐诗 杨阳[2] 陈锶奇 TANG Shi;YANG Yang;CHEN Siqi(High School Affiliated to Southwest University,Chongqing 400700,China;College of Intelligence and Computing,Tianjin University,Tianjin 300072,China)

机构地区:[1]西南大学附属中学,重庆400700 [2]天津大学智能与计算学部,天津300072

出  处:《无线电通信技术》2022年第4期734-744,共11页Radio Communications Technology

基  金:国家自然科学基金(61602391)。

摘  要:协商是一种强有力的解决双方矛盾、冲突和争议的机制,目前被广泛应用于经济、人工智能、商业等领域,有非常重要的社会价值。基于智能体的协商旨在代表人类实现协商过程的自动化,以节省时间和精力。运用到自动协商领域的基于深度强化学习方法训练的自动协商智能体可以在较短时间内用较小的成本系统地考虑所有可能的结果。通常,将自动协商问题建模为马尔可夫决策过程,运用深度强化学习方法来学习目标效用值、接受策略,或报价和接受策略可以减少达成协议所需的时间和精力,同时增加达成更好的双赢协议的机会。该综述在简要回顾自动协商框架和模型后,系统阐述深度强化学习在自动协商任务中的应用,介绍经典算法及模型,分析模型特点,探讨未来深度强化学习与自动协商任务融合的前景和挑战。Negotiation is the process where parties interact to settle issues,discover surplus,and create contracts.Because negotiation is so essential to society,it has been widely studied by different fields,in economics,artificial intelligence,business and so on.Agent-based negotiation aims at automating negotiation process on behalf of humans to save time and efforts.An auto-negotiation agent trained by deep reinforcement learning can systematically consider all possible outcomes in a relatively short time and at a relatively low cost.In general,modeling auto-negotiation problems as Markov decision processes and applying deep reinforcement learning methods to learn target utility,acceptance strategy or offer and acceptance strategy can reduce the time and effort required to reach an agreement while increasing the chances of reaching a better win-win agreement.After a brief review of auto-negotiation frameworks and models,this review systematically describes the application of deep reinforcement learning in automated negotiation tasks,introduces the classical algorithms and models,analyzes the characteristics of the models,and discusses the future prospects and challenges of the integration of DRL and automated negotiation tasks.

关 键 词:深度强化学习 自动协商 多智能体系统 协商策略 

分 类 号:TN919.23[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象