检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙超 闻敏 李鹏祖 李瑶 Ibegbu Nnamdi JULIAN 郭浩 SUN Chao;WEN Min;LI Pengzu;LI Yao;Ibegbu Nnamdi JULIAN;GUO Hao(College of Information and Computer,Taiyuan University of Technology,Taiyuan 030024,China)
机构地区:[1]太原理工大学信息与计算机学院,太原030024
出 处:《计算机工程与应用》2022年第14期126-133,共8页Computer Engineering and Applications
基 金:国家自然科学基金(61672374,61741212,61876124,61873178);山西省科技厅应用基础研究项目青年面上项目(201801D121135);教育部赛尔网络下一代互联网技术创新项目(NGII20170712);山西省重点研发计划项目(201803D31043)。
摘 要:近年来,脑网络被广泛应用在脑部疾病的诊断和分类中。考虑到大脑的不确定性特征,先前的研究将不确定图应用在脑网络建模中。在不确定脑网络研究中,传统的特征提取方法多采用均值、方差、极差等进行子图特征提取,但是它们存在泛化性能差以及子图间差异无法直接衡量的问题,进而影响分类准确率。因此,相对极差被提出作为新的特征提取方法。这一方法的优点在于既考虑到子图模式间的最大差异,又考虑到子图模式间的组间差异,可以有效避免传统方法的弊端。结果表明,相对极差与其他特征提取方法相比,其分类性能显著高于传统方法。同时,在不同的特征选择方法下相对极差表现出较好的分类性能,具有很强的泛化性。该研究为不确定脑网络特征提取方法提供了重要的参考意义。In recent years,brain network has been widely used in the diagnosis and classification of brain diseases.Con-sidering the uncertainty characteristics of brain,some researches applied uncertain graph to brain network modeling.In the research of uncertain brain networks,traditional feature extraction methods mostly used mean,variance,range and other methods to extract subgraph features,but they have the problems of poor generalization performance and the difference between subgraphs cannot be directly measured.Therefore,relative range is proposed as the new feature extraction method.The advantage of this method is that it not only takes into account the maximum differences between subgraph patterns,but also takes into account the differences between subgraph patterns,which can effectively avoid the disadvantages of tra-ditional methods.The results show that compared with other feature extraction methods,the classification performance of the proposed method is significantly higher than that of the traditional method.Meanwhile,under different feature selec-tion methods,the relative range shows good classification performance and strong generalization.This study provides an important reference for feature extraction of uncertain brain networks.
关 键 词:不确定脑网络 频繁子图 特征选择 机器学习 分类
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170