检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张金辉[1] 郑宇博 罗莹莹[2] 邹冰 央妮 李蕾[2] ZHANG Jinhui;ZHENG Yubo;LUO Yingying;ZOU Bing;YANG Ni;LI Lei(Equipment Support Room,Logistic Support Center,Chinese PLA General Hospital,Beijing 100853,China;School of Artificial Intelligence,Beijing University of Posts and Telecommunications,Beijing 100876,China)
机构地区:[1]解放军总医院服务保障中心装备保障室,北京100853 [2]北京邮电大学人工智能学院,北京100876
出 处:《中国医疗设备》2022年第7期49-53,共5页China Medical Devices
基 金:军队装备综合研究项目(LB2020A010010)。
摘 要:目的利用脑电信号进行睡眠分期是分析人睡眠状态的重要方法,通过引入人工智能深度学习来研究基于多通道脑电信号的睡眠分期方法。方法提出基于注意力的多通道脑电信号睡眠分期方法(Attention Based Multi-Channel EEG Sleep Net,AMCSleepNet),该方法利用多个分支卷积网络分别提取脑电信号不同通道的时频域特征,设计新型压缩聚合层和残差层自适应融合多通道脑电信号的特征,并通过Transformer编码器挖掘特征的时间相关性。结果在2021全国智能睡眠科学大赛提供的多通道脑电数据上,AMCSleepNet的平均准确率达到了81.86%,相较于基于注意力的单通道模型和多通道深度卷积模型分别提升了5.69%和11.06%。结论AMCSleepNet方法能够利用多通道脑电信号提升睡眠分期的准确率,可更充分利用睡眠数据,潜在应用价值较高。Objective Sleep staging based on electroencephalogram(EEG)signal is an important method to analyze human sleep state.This paper introduced artificial intelligence deep learning approach to process the method of sleep staging based on multi-channel EEG signals.Methods An attention-based multi-channel EEG sleep net(AMCSleepNet)was proposed.In this method,multiple branched convolutional networks were used to extract the time-frequency domain features of different channels of EEG signals.The AMCSleepNet designed squeeze-excitation layer and residual layer to adaptively fuse the features of multi-channel EEG signals,and applied a transformer encoder to mine the temporal correlation of the features.Results Testing on the multi-channel EEG data provided by the 2021 National Intelligent Sleep Science Competition,the average accuracy rate of the AMCSleepNet reached 81.86%,which was 5.69%and 11.06%higher than that of attention-based single-channel model and multi-channel deep convolution model respectively.Conclusion The AMCSleepNet method can improve the accuracy of sleep staging by using multi-channel EEG signal,make full use of sleep data,and has high potential application value.
分 类 号:R318[医药卫生—生物医学工程] TN911.7[医药卫生—基础医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15