检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张庆泽 尹龙逊 张强[2] 王博[1] 叶东[1] 王佐伟[3] ZHANG Qingze;YIN Longxun;ZHANG Qiang;WANG Bo;YE Dong;WANG Zuowei(Harbin Institute of Technology,Harbin 150001,China;Beijing Space Vehicle General Design Department,Beijing 100094,China;Beijing Institute of Control Engineering,Beijing 100094,China)
机构地区:[1]哈尔滨工业大学,哈尔滨150001 [2]北京空间飞行器总体设计部,北京100094 [3]北京控制工程研究所,北京100094
出 处:《空间控制技术与应用》2022年第3期49-56,共8页Aerospace Control and Application
基 金:国家自然科学基金资助项目(62073102)。
摘 要:近距离掠飞能够以较小的燃料消耗实现对空间目标的抵近观测,是空间态势感知的重要手段.任务航天器抵近目标航天器后实施观测,需满足合适的观测距离、光照角度等诸多条件,该过程具有很强的约束性,因此需要寻找一种既能快速优化,又可使优化后的轨道满足任务需求的优化算法.本文设计了一种综合多步优化和序列二次规划综合的优化算法,并提出了针对近程观测任务约束条件的简化模型,用以处理运算过程中的非线性约束问题,在符合任务需求和满足约束条件的前提下实现燃料最省的轨道机动.通过程序运算及仿真,验证了算法设计的有效性及简化模型的合理性.As an important means of space situational awareness,close-range skimming can realize the close observation of space targets with less fuel consumption.After approaching the target spacecraft,the mission spacecraft needs to meet many conditions such as appropriate observation distance and illumination angle.This process has strong constraints.Therefore,it is necessary to find an optimization algorithm that can not only quickly optimize,but also can make the optimized orbit meet the mission requirements.In this paper,an optimization algorithm combining multi-step optimization and sequential quadratic programming synthesis is designed,and a simplified model is proposed for the constraints of short-range observation missions to deal with the nonlinear constraints in the operation process,The most fuel-efficient orbital maneuver is achieved under the mission requirements and constraints.The validity of the algorithm and the rationality of the simplified model are verified by the program calculation and simulation.
分 类 号:V448.2[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.218.96