检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卜亚辉[1] BU Yahui(Exploration and Development Research Institute,Shengli Oilfield Company,SINOPEC,Dongying City,Shandong Province,257015,China)
机构地区:[1]中国石化胜利油田分公司勘探开发研究院,山东东营257015
出 处:《油气地质与采收率》2022年第4期135-142,共8页Petroleum Geology and Recovery Efficiency
基 金:中国石化科技前瞻项目“基于大数据的油藏流场调控优化研究”(P19001);中国石化科技攻关项目“基于数据驱动的开发指标预测与调控方法研究”(P20071-2)。
摘 要:根据高含水油田剩余油分布特点,提出了含油饱和度等值线拟合样本预制作方法及基于人工神经网络的剩余油预测方法。利用数值模拟批量生成不同井距、物性、工作制度等条件下注采井组间剩余油分布场,编写模块自动提取少量含油饱和度等值线,使用多项式函数拟合不同时刻和层位含油饱和度等值线建立拟合参数样本数据集,实现机器学习样本参数量的大幅度降低。使用Tensorflow搭建神经网络模型,学习训练后形成注采井组间含油饱和度等值线预测模型,根据多个井组间等值线图叠加结果重构研究区含油饱和度场。基于高含水油田实际数据,与数值模拟相比,该方法对断层边界、层间剩余油富集区、井间局部零散剩余油均具一定预测能力;同时可将注采井生产动态数据快速转化为含油饱和度场数据,较传统方法的计算速度和定量化程度显著提高。According to the distribution characteristics of remaining oil in high water cut oilfields,the pre-making method of fitting samples of oil saturation isolines and the remaining oil prediction method based on the artificial neural network are proposed.This paper applies the numerical simulation method to generate the remaining oil distribution fields between injection and production well groups under different well spacings,physical properties,working systems,and other conditions in batches.It programs a module to automatically extract a small amount of oil saturation isolines and constructs fitting parameter sample data set by polynomial functions to fit the oil saturation isolines at different times and horizon.This method can reduce the sample parameters of machine learning.Tensorflow is adopted to construct the neural network model.After the learning and training process,the oil saturation isoline prediction model between injection and production well groups is formed.The oil saturation field is reconstructed according to the superposition results of isoline maps between multiple well groups.Comparison between the actual data of high water cut oilfield and numerical simulation shows that the new method has prediction ability for fault boundary,interlayer residual oil enrichment area,and local scattered remaining oil between wells.This method can quickly convert dynamic data of oil and water wells into saturation field data.Compared with the traditional method,the proposed method significantly improves the calculation speed and quantification.
关 键 词:数值模拟 机器学习 人工神经网络 高含水油田 剩余油
分 类 号:TE319[石油与天然气工程—油气田开发工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145