检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王骁贤 陆思良[3] 何清波[4] 张世武 Wang Xiaoxian;Lu Siliang;He Qingbo;Zhang Shiwu(College of Electronics and Information Engineering,Anhui University,Hefei 230601,China;Department of Precision Machinery and Precision Instrumentation,University of Science and Technology of China,Hefei 230027,China;College of Electrical Engineering and Automation,Anhui University,Hefei 230601,China;School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
机构地区:[1]安徽大学电子信息工程学院,合肥230601 [2]中国科学技术大学精密机械与精密仪器系,合肥230027 [3]安徽大学电气工程与自动化学院,合肥230601 [4]上海交通大学机械与动力工程学院,上海200240
出 处:《仪器仪表学报》2022年第3期59-67,共9页Chinese Journal of Scientific Instrument
基 金:国家自然科学基金(52075002)项目资助。
摘 要:本文提出一种利用多传感器信号深度特征融合的方法实现电机变转速工况下的故障诊断。首先从多传感器节点同步采集电机的多通道振动、声音和漏磁信号。对漏磁信号进行处理获取电机转子的累积转角曲线,随后利用累积转角曲线对振动和声音信号进行阶比分析处理。最后利用双层双向长短期记忆网络从经过预处理的多传感器信号中提取和融合特征以诊断电机故障。实验结果表明,通过提取和融合8通道的电机振动和声音信号,本文提出的方法能够有效识别电机的高阻接触、偏心、霍尔断线、相间短路、轴承等10类运行状态,分类准确率达到99.86%。该方法有望部署在物联网边缘计算节点中,实现电机的远程在线状态监测和故障诊断。This article proposes a method based on the deep feature fusion of multi-sensor data for accurate motor fault diagnosis under varying speed condition.First,vibration,acoustic,and leakage magnetic signals are sampled from the data acquisition node.The accumulative rotating angle of the motor rotor is calculated from the leakage magnetic signal.Then,the order analysis is conducted on the vibration and acoustic signals based on the angle curve.Finally,the features of the pre-processed signals are extracted and fused by using the double-layer bidirectional long short-term memory(DBiLSTM)networks for fault pattern recognition.Experimental results show that the proposed method can identify 10 types of working conditions including high-resistance connection,eccentric,broken wire of the Hall sensor,interphase short circuit,and bearing faults with the accuracy of 99.86%,by extracting and fusing of 8 channels of motor vibration and acoustic signals.The method is promising to be deployed into the internet of things edge computing node for remote online condition monitoring and fault diagnosis.
关 键 词:电机故障诊断 多传感器信号 深度特征融合 双层双向长短期记忆网络 阶比分析
分 类 号:TM351[电气工程—电机] TH133.3[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.82.212