Applying the Theory of Numerical Radius of Operators to Obtain Multi-observable Quantum Uncertainty Relations  

在线阅读下载全文

作  者:Kan HE Jin Chuan HOU 

机构地区:[1]College of Mathematics,Taiyuan University of Technology,Taiyuan 030024,P.R.China [2]College of Information and Computer Science,Taiyuan University of Technology,Taiyuan 030024,P.R.China

出  处:《Acta Mathematica Sinica,English Series》2022年第7期1241-1254,共14页数学学报(英文版)

基  金:Supported by National Natural Science Foundation of China(Grant Nos.11771011,12071336)。

摘  要:Quantum uncertainty relations are mathematical inequalities that describe the lower bound of products of standard deviations of observables(i.e.,bounded or unbounded self-adjoint operators).By revealing a connection between standard deviations of quantum observables and numerical radius of operators,we establish a universal uncertainty relation for k observables,of which the formulation depends on the even or odd quality of k.This universal uncertainty relation is tight at least for the cases k=2 and k=3.For two observables,the uncertainty relation is a simpler reformulation of Schr?dinger’s uncertainty principle,which is also tighter than Heisenberg’s and Robertson’s uncertainty relations.

关 键 词:Numerical radius of operators quantum uncertainty principle quantum observables quantum deviations 

分 类 号:O177[理学—数学] O413[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象